
Design and Optimization of Future Aircraft for

Assessing the Fuel Burn Trends of Commercial

Aviation

Thomas D. Economon∗, Sean R. Copeland∗, and Juan J. Alonso†,
Stanford University, Stanford, CA 94305, U.S.A.

Mazyar Zeinali‡ and Daniel Rutherford§

International Council on Clean Transportation, San Francisco, CA 94104, U.S.A.

Accurately predicting the fuel burn performance and CO2 emissions of future aircraft
is of fundamental importance when setting efficiency goals and standards for commercial
aviation. Over the next 10-20 years, improvements in fuel burn performance will largely
result from aerodynamic, structural, and propulsive technologies whose true capabilities at
the time of technology insertion can only be predicted with some level of uncertainty. In
addition, significant reductions in fuel burn and CO2 emissions can be realized by changing
the design mission specifications of new aircraft, such as design range, payload, or cruise
Mach number. This paper presents our recent work to quantify the potential impact of
both improvements in technology and design mission specification changes on aircraft fuel
burn. Technology improvements and interactions between those technologies are modeled
using a probabilistic framework, and Monte Carlo optimizations and optimization under
uncertainty are pursued. These methods enable both the quantification of the uncer-
tainty/variability in the fuel burn metric and the minimization of it. Mission specification
changes are studied in a deterministic optimization framework, and results on the potential
of such changes are presented together with sensitivities of the performance with respect
to all mission and technology factors. The results show that, with use of conceptual-level
analysis and design techniques, the uncertainties in the future performance and emissions
of commercial aircraft can be quantified and managed.

Nomenclature

ATK Available tonne-kilometer
AR Aspect ratio
ASK Available seat-kilometer
CL Coefficient of lift
c Center of an interaction pdf
CAEP Committee on Environmental Protection
FAR Federal Aviation Regulations
GHG Greenhouse gas
I Technology interaction modifiers
ICAO International Civil Aviation Organization
kg/ATK Fuel burn metric, kilograms of fuel burned per available tonne-kilometer
LFL Landing field length
LTTG Long-term technology goals
MC Monte Carlo
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MTOW Maximum take-off weight
MZFW Maximum zero fuel weight
OEW Operating empty weight
OUU Optimization under uncertainty
PAX Mass of passengers at full seating capacity
pdf Probability density function
SA Single aisle aircraft
R1 Maximum payload at maximum range
SFC Engine specific fuel consumption
Sref Reference area
STA Small twin aisle aircraft
TOFL Take-off field length
μ Mean
ξ+ Technology/interaction pdf most probable region upper bound
ξ− Technology/interaction pdf most probable region lower bound
σ Standard deviation

Subscript

AP Aerodynamics acting on propulsion
AS Aerodynamics acting on structures
max Maximum value
PA Propulsion acting on aerodynamics
PS Propulsion acting on structures
SA Structures acting on aerodynamics
SLS Sea level static
SP Structures acting on propulsion

I. Introduction

Minimizing fuel burn has traditionally been a key concern for the manufacturers of aircraft and engines
as well as the airlines that operate them. More recently, the need to constrain the rapid growth in

greenhouse gas (GHG) emissions from the aviation sector has begun to attract greater attention. The
aviation sector is considered to be one of the fastest growing sources of anthropogenic GHG emissions,
with emissions from aircraft increasing 45 % from 1992 to 2005. In 2005, aircraft were responsible for
approximately 2.5 % of anthropogenic CO2 emissions and 3.5 % of historical manmade radiative forcing,
without accounting for the potential impact on cloud formation.1 Left unchecked, aircraft CO2 emissions
are projected to quadruple by 2050,2 during which time many scientists believe total anthropogenic GHG
emissions must be reduced 60 % to 80 % to stabilize the global climate.

Under Article 2.2 of the 1997 Kyoto Protocol, developed nations agreed to reduce or limit emissions from
international aviation, which were not covered under national targets, through the International Civil Avi-
ation Organization (ICAO). In February 2010, the Committee on Environmental Protection (CAEP) under
ICAO declared its intention to develop a CO2 standard for new aircraft by 2013 as one component in a set
of measures to manage the climate impact of aviation. ICAO later adopted a 2 % system-wide, annual effi-
ciency improvement goal for aviation through 2050.3 This fleet-wide pace of improvement will likely require
a significant acceleration of current fuel efficiency improvement rates for new aircraft,4 the development of
sustainable aviation fuels with low life-cycle CO2 intensity in sufficient quantities, the adoption of vastly
more efficient operational procedures, or a combination of all three.

In parallel with its work on a CO2 standard, in April 2009, CAEP formed a panel of Independent
Experts (IEs) with backgrounds in industry, government, and academia to establish long-term technology
goals (LTTG) for aircraft fuel burn. The study focused on new aircraft to be introduced into the global
fleet in the 2020 and 2030 time frames. The IEs devised three future technology development scenarios,
representing varying degrees of regulatory pressure to reduce fuel burn. Specific technological advancements
in structures, aerodynamics, and propulsion were placed in a particular scenario agreed upon by the IEs to
be the most appropriate, thus forming “technology packages” which could be applied in analysis tools for
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assessing the potential fuel efficiency improvements of representative single aisle (SA) and small twin aisle
(STA) aircraft. Through those scenarios, the LTTG panel recommended fuel burn reduction goals of new
SA and STA aircraft in 2020 by 29 % and 25 %, respectively, and by approximately 35 % for both types in
2030 relative to a year 2000 technology baseline.5

The LTTG report identifies three issues that it was unable to comprehensively address due to time and
resource constraints:

1. The impact of uncertainties in technological development on the fuel burn metric and how it may affect
the recommended goals,

2. The lack in modeling of integration interdependencies between technologies which could not be handled
by conceptual-level tools (e.g., weight and aerodynamic penalties resulting from the installation of high
bypass ratio engines with lower SFC),

3. The role of aircraft design mission specification changes, such as design range, payload, or cruise Mach
number, in reducing emissions independent of technology.

The intent of this paper is to begin addressing these concerns, and, in doing so, to shed light on how
airframe and engine manufacturers may choose to comply with a CO2 standard that requires fuel efficiency
improvements beyond those driven by market forces alone. The authors recognize that some mission specifi-
cation changes such as the ones proposed here will require further study in order to assess their true potential
when implemented system-wide. Such studies will begin during the coming months.

II. Methodology

In this work, we choose to model the aleatory uncertainties in both the level of improvement expected from
future technologies and in the non-modeled interactions between the various technologies to be integrated in a
probabilistic fashion. Distributions are assumed (with carefully-chosen means and statistical variability) and
their effects are propagated through the aircraft design process using Monte Carlo (MC) and Optimization
Under Uncertainty (OUU) techniques. Instead of obtaining a single, deterministic value of the fuel burn
metric for a given scenario as in the LTTG report, we are able to present expected values of this metric and,
additionally, the variability in the resulting aircraft performance. The intent is to provide information about
what can be expected in the future and the probability of achieving certain results.

Manufacturers faced with CO2 standard compliance may choose to reduce the fuel burn of new aircraft
through design mission changes rather than by introducing new technologies. In certain cases, improving
aircraft efficiency by reducing maximum aircraft capabilities such as design range, cargo capacity, or cruise
Mach number may be more cost effective than developing and deploying new technology. Furthermore, since
the relationship between fuel burn and aircraft mission specifications can be easily defined, manufacturers
may use design mission changes to improve aircraft efficiency as a hedge against the technological uncer-
tainty discussed above. Recent studies6,7 have suggested that aircraft are rarely used near their maximum
performance capabilities (particularly for range, but also payload), indicating that scaling back on these ca-
pabilities can lead to improved efficiency at little direct cost by closer matching aircraft design to operational
mission. Furthermore, the LTTG report5 showed that certain mission specification changes can have an im-
pact on the order of very significant technology improvements. These changes in mission specification can
be used independently or in combination with technology improvements either to decrease the uncertainty
in the potential improvements in fuel burn or to further enhance the fuel burn potential of the future fleet.

A. Modeling Future Technology

In assessing the future landscape of commercial aviation, projections for the most prevalent classes of aircraft
and their corresponding levels of technology are needed. Despite already dominating the market, single aisle
and twin aisle commercial aircraft are expected to experience further growth over the next 20 years. Forecasts
by Boeing8 indicate that approximately 92 % of the global aircraft fleet will occupy these two market segments
by 2029, compared to just under 80 % during the year 2009. The share of the global fuel burn represented
by these aircraft types is also projected to be around 90 %. To capture this market trend while maintaining
tractability in the analysis, modern representative aircraft from these two classifications were selected as
baseline configurations for this study. High capacity and regional jet aircraft have not been considered as
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Table 1. Assumed percent improvements in five key technology areas presented as pdfs.

SA 2020 SA 2030 STA 2020 STA 2030
ξ− μ ξ+ ξ− μ ξ+ ξ− μ ξ+ ξ− μ ξ+

Propulsive -1.5 14 1.5 -3 15 3 -1.5 7 1.5 -3 10 3
Thermal -0.75 4 0.75 -1.25 5 1.25 -0.75 3 4 -1.25 4 1.25
Inviscid -0.5 4 0.5 -1 6 4 -0.5 4 0.5 -1 6 4
Viscous -0.75 4 0.75 -1 7 4 -0.5 4 4 -1 8 4

Structural -4 15 4 -5 20 5 -4 15 4 -5 20 5

they represent a minority of the fuel burned by the projected fleet, but the same methodologies presented
here could be extended to those aircraft classes in a more detailed study. As will be shown below, baseline
aircraft replicating the performance of the B737-800 with winglets and B777-200ER were constructed for use
with aircraft conceptual design software.

With representative aircraft classes selected, the spectrum of possible future technology advancements
was considered. As discussed in the Introduction, the IEs for the LTTG report5 generated a matrix of the
most likely technologies to mature and be integrated into the fleet. With each technology came an attached
percentage improvement in efficiency for one of five general categories over the year 2000 baseline level:
engine propulsive efficiency, engine thermal efficiency, inviscid drag reduction, viscous drag reduction, and
structural efficiency (weight reduction). These percentage improvements were then organized into packages
for application to aircraft of a specific scenario based upon the time frame (2020 or 2030) and level of
regulatory pressure to reduce fuel burn. Technology Scenario 2 (TS2) from the LTTG report was selected as
the starting point for this study. This scenario represents an increased level of external pressure (beyond the
significant evolutionary improvements historically achieved by industry) to accelerate maturation of advanced
technologies while retaining conventional tube and wing aircraft configurations. The resulting technology
improvements for the four scenarios (two aircraft classes with two time frames each) are displayed as the
mean values (μ) in Table 1.

0 0.1 0.2 0.3

pd
f

Structural Improvement (%)

Figure 1. Example pdf of structural improvement for the SA 2020 scenario. Note that the probability of
a sampled value falling between ξ− and ξ+ is 0.67 by construction and that the mean does not necessarily
coincide with the peak of the distribution.

For the portion of this paper concerned with uncertainty quantification, the technology assumptions were
further refined. Rather than assuming deterministic (single-valued) percentage improvements in technology,
a probability density function (pdf) covering a range of most likely improvements based on expert opinion
(in this case, that of the authors) was constructed for each of the five technology areas across all four
design scenarios. The pdfs were generated by specifying a mean value along with positive and negative
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Table 2. Interdependencies between technology areas presented as pdfs of percent improvement.

SA 2020 SA 2030 STA 2020 STA 2030
ξ− c ξ+ ξ− c ξ+ ξ− c ξ+ ξ− c ξ+

IAP 0 0 0 -1 0 0 0 0 0 -1 0 0
ISP 0 0 0 0 0 0 0 0 0 0 0 0
IPA -0.333 -1 0.333 -0.5 -1.5 0.5 -0.333 -0.5 0.333 -0.333 -1 0.333
ISA 0 0 0 0 0 0 0 0 0 -1 0 0
IPS -0.5 0 0 -0.5 0 0 -0.5 0 0 -1 0 0
IAS -0.5 0 0 -0.5 0 0 -0.5 0 0 -1 0 0

increments (ξ+, ξ−) from the mean which describe the range of most likely values for that technology. Beta
distributions were chosen for the pdfs where the ξ-values defined the range occurring with a probability of
0.67. For example, in the SA 2020 scenario, instead of assuming a static 15 % improvement in structural
efficiency, a random sample was taken from a pdf with a mean of 15 % and a 0.67 probability of the sample
falling between 11 % and 19 %. This is expressed graphically in Figure 1. Note that, in general, a significant
level of uncertainty was associated with most technologies. These input uncertainties are considered to be
quite reasonable given our ability to predict the future over 10 and 20 year intervals.

The motivation for considering pdfs of the technologies is to allow for more realism in the resulting
analyses by assessing and mitigating the effects of incorrect future technology predictions. This approach
directly addresses one of the limitations of the LTTG report noted in the Introduction. Furthermore,
by assuming ranges for the technologies, a spectrum of results will reveal the impact of various levels of
technology on fuel burn and give insight into the importance of technology maturation timelines.

In response to the uncertainty in technology interdependencies that result from possible penalties of
integrating multiple technologies onto a future aircraft, a similar procedure based upon pdfs was pursued. A
second layer of pdfs was created that allowed for a range of outcomes when coupling technology advancements
from different disciplines onto a single aircraft. The distributions can be described as interaction modifiers
(I) which may increase or decrease the percent improvement realized when incorporating new technologies.
These distributions were created in a similar manner to those of the technologies: by using the best judgement
and expert opinion of the authors. Since some of these interaction pdfs are one-sided and it was desired that
implementation most probably resulted in no net improvement or a detriment to performance, we depart
from a specification of the mean and declare the pdf as being centered around a value (c) as a matter
of nomenclature. The interaction pdfs are presented in Table 2. In the generation of these input pdfs,
consideration was given to all known interactions between the technologies contained in each basket, such
as the effect of installing large, high bypass ratio engines on aerodynamics and structures or the penalty in
engine performance if it is used to power a suction system for attaining laminar flow.

It must be noted that the probabilistic representation of the technology interdependencies is simply a
surrogate for the detailed design work that would be carried out during the preliminary design phase for
specific combinations of the chosen technologies. While this probabilistic representation of actual integration
work cannot be a substitute for the design work itself, it does provide us with realistic assessments of what
the outcomes might be once airframers and engine manufacturers focus on the solution of a particular design
problem and allows for the continued use of conceptual-level design tools.

B. Non-Deterministic Procedures

In order to properly quantify the effects of uncertainties in the realizable technology improvements and
in technology interactions on our predictions, we have focused on two probabilistic analysis and design
approaches that are briefly described below. The first approach focuses on obtaining statistics for a large
set of aircraft optimizations that incorporate technology improvements and interactions obtained through
Monte Carlo sampling of the input distributions. Our second approach is a more formal Optimization
Under Uncertainty approach that focuses on robust designs. Both approaches are described in the following
sections.
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1. Design Optimization of Monte Carlo Samples

A straightforward way of assessing the probabilities of outcomes (fuel burn) for uncertain distributions of
technology improvements and interactions is the use of Monte Carlo simulation. In the Monte Carlo method,
input distributions are sampled and, for each sample, a full aircraft optimization with a given set of values of
technologies is carried out. The resulting set of these optimizations can be used to extract moments (means,
variances), and both probabilities and expected values can be computed. Given the fact that the conceptual
analysis and optimization procedures that we use in this work execute in very short amounts of time, it is
possible to carry out thousands of Monte Carlo samples to achieve the required level of convergence for the
results that we seek.

The Program for Aircraft Synthesis Studies (PASS)10 is a multi-disciplinary, conceptual-level design tool
incorporating finely-tuned, quickly-executed modules based on low-fidelity physical models and historical
correlations. PASS is written in Java, handles a large set of aircraft design parameters (MTOW , span,
sweep, cruise altitude, etc.), and allows for analyzing the performance (range, field lengths, climb gradient,
fuel burn, emissions, noise, etc.) of an aircraft defined by those parameters. PASS also contains an interface
for connecting to MATLAB and executing the built-in fmincon optimizer. This functionality allows for the
deterministic optimization of a configuration for an arbitrary, user-selected objective function, an arbitrary
set of design parameters, and an arbitrary set of constraints. The software is well established as a research
platform, including use in numerous studies at Stanford University.11–14 For this study, we chose to optimize
aircraft by minimizing the kilograms of fuel burned per available tonne-kilometer (kg/ATK) with respect to
the design parameters and subject to the constraints given in Table 3. For brevity, the various bounds on
these parameters and constraints for the different aircraft and time frame scenarios have been omitted.

Technology PDFs Baseline Aircraft 

Statistical Output via Monte Carlo 

Figure 2. Input/output schematic for the pyPASS script.

To complete Monte Carlo optimizations, PASS was wrapped in the Python programming language to cre-
ate the pyPASS script. Rather than perform a single analysis and optimization, the wrapper code automates
the input and output for running an arbitrarily large number of analysis and/or design optimization cases.
pyPASS accepts an input file designating the shapes of the technology distributions and the baseline aircraft
to be used as a starting point in the design process. For each case, it randomly samples the various tech-
nology pdfs, compounds the samples into technology multipliers to be applied to the baseline aircraft, and
runs an optimization through MATLAB. The resulting optimized configurations and performance metrics
are tabulated and stored. pyPASS was also parallelized to increase computational efficiency while handling
large numbers of Monte Carlo optimizations.

As mentioned, pyPASS requires a baseline aircraft definition as an input. Developing the baselines made
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Table 3. List of the aircraft design parameters and constraints for the chosen optimization problem within
pyPASS.

Design Parameters Constraints
MTOW Range

Sref TOFL

AR LFL

Wing Sweep Minimum Static Margin
Wing Thickness to Chord Ratio Second Segment Climb Gradient

Taper Ratio Landing Gear Position
Wing Position Initial Cruise Ratio of Drag to Thrust

Horizontal Tail Size Final Cruise Ratio of Drag to Thrust
Vertical Tail Size Difference between CLmax and CL of the tail: at Take-off

Initial Cruise Altitude at Take-off Rotation
Final Cruise Altitude at Climb

ThrustSLS at Initial Cruise
Take-off Flap Deflection at Final Cruise
Landing Flap Deflection at Landing
Take-off Slat Deflection Difference between CLmax

and CL of the wing: at Climb
Landing Slat Deflection at Initial Cruise
Take-off Mach Number at Final Cruise
Landing Mach Number Span

MZFW/MTOW Payload Margin

use of public data published by Boeing.9 Aircraft attributes, such as MTOW , MZFW , OEW , usable
fuel, cabin configurations, available engine installations, etc., were taken directly from tabulated values in
the source material and reverse-engineered to produce a model of the baseline aircraft that matched the
performance of the actual vehicles within 1-2.5 %. As mentioned earlier, both the B737-800 with winglets
and the B777-200ER were used as template aircraft configurations when building SA and STA baselines for
pyPASS. A schematic representing the agreement between the published dimensions and the constructed
baselines is shown in Figure 3.

In the Monte Carlo section of our results, note that we sample the input distributions to yield values
of technology improvements and interactions and, for each of these samples, we conduct a full optimization
to arrive at a resized future aircraft that in every respect matches the original mission of the B737-800 and
the B777-200ER. On the order of 15,000 optimizations are performed for each scenario and the results are
presented as statistics of the outcomes of these vast numbers of optimizations.

2. Optimization Under Uncertainty

While the Monte Carlo optimization procedure described above gives us some idea of the variability that
would be expected should future aircraft be designed under various technology assumptions, it is also in-
teresting to understand how one would design a single aircraft (for each scenario) that is most robust. By
robust, we mean that the aircraft performance should only be affected slightly (as measured by the standard
deviation of the performance metric) by the potential variations in the actual technology improvements that
may be realized in 2020 and 2030. It is understood that robustness will come at some cost: the expected
value of the fuel burn metric will likely be slightly higher in order to gain additional robustness. How severe
are these tradeoffs? In some senses, we are attempting to answer the questions of how to hedge our bets
in designing a future vehicle and how much performance would we have to trade in in order to achieve this
robustness. For purposes of carrying out these design/optimization under uncertainty calculations, we use
pyPASS and the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) toolkit.

The DAKOTA toolkit, developed at Sandia National Laboratories,15 provides a powerful interface to link

7 of 20

American Institute of Aeronautics and Astronautics



analysis codes to iterative analysis methods. DAKOTA is equipped with algorithms for optimization (both
gradient and non-gradient based), uncertainty quantification, parameter estimation and sensitivity analysis.
These capabilities can be exercised independently or tied together to conduct more advanced analysis and
design work, such as optimization with surrogate-models, OUU, and hybrid optimization.

While one could use advanced features of DAKOTA for OUU, we are simply taking advantage of its
optimization capabilities (through the NPSOL gradient-based optimizer) by supplying it with statistics
(mean and standard deviation) of the objective and constraint functions of interest. To accomplish this, for
every function evaluation that DAKOTA requests, we perform a series of Monte Carlo analyses with sufficient
samples in order to provide converged statistics, including those that are used for gradient calculations by the
optimization scheme. While the optimizations require thousands of function evaluations, the execution time
is short enough to allow this approach. In the future, we intend to enhance the fidelity of the simulations
and to leverage polynomial chaos expansions and stochastic collocation methods in DAKOTA to obtain
higher-fidelity results in the same amount of computational time.

For each future scenario, we solve the following optimization under uncertainty problem:

min
x∈RN

μ

(
Kg fuel
ATK

(x,Y)
)

+ β σ

(
Kg fuel
ATK

(x,Y)
)

such that gi(x) ≤ 0, i = 1, . . . , M, (1)

where the objective function to be minimized is a linear combination of the mean of the fuel burn metric (a
function of the design parameters, x, and under variations of the technology improvements and interactions,
Y) and the standard deviation, σ, of the same quantity with a user-specified weight, β. By combining these
two portions of the objective we attempt to ensure the robustness of the outcome. The optimum is achieved
by varying the series of design parameters, x, and by satisfying a series of nonlinear constraints for the
design problem at hand. The computation of μ and σ are achieved by Monte Carlo sampling of the 8-10
random variables that represent the technology improvement and interaction pdfs for each case described
earlier. The same design parameters and constraints from the MC approach (Table 3) were used for the
OUU problem.

Internally, DAKOTA uses the NPSOL gradient-based optimizer16 to arrive at a converged optimum of
the problem described in Equation 1. Note that, due to the Monte Carlo nature of the function evaluations,
a very significant number of samples (over 15,000) are needed so that the gradient information is sufficiently
accurate for optimization purposes. The value of the weighting parameter β is chosen by the user (and was
set to β = 4 for all the calculations presented in this paper). The value of this parameter can be varied to
arrive at a family of options (a Pareto front) where performance and robustness are traded against each other.
While this has not been pursued in this paper, we intend to carry out these simulations in the future in order
to characterize the trade-offs between performance and variability. For this problem with approximately 20
design parameters, the NPSOL procedure typically converges in less than 60 design iterations with a total
of several hundred function evaluations (each representing a Monte Carlo analysis).

C. Deterministic Procedure for Mission Specification Changes

In addition to assessing the impact of technology and integration uncertainties on the design and performance
of future aircraft, a major objective of this paper is to assess the potential for fuel burn improvements from
changes to the design mission specifications of future vehicles. For this purpose, we have used a deterministic
procedure to perform optimizations based on the PIANO software and pre-specified changes in mission design
specifications described below.

PIANO, a preliminary aircraft design software tool, is in use by aircraft manufacturers, academic insti-
tutions, and governments, and it has also been used in analyses performed by ICAO for aircraft efficiency
studies. In our work, it was used in the design influence and sensitivity analyses. In addition, PIANO fuel
burn and emissions estimates are a basis for ICAOs carbon calculator and are used in ongoing research under
the US FAA PARTNER program on metrics to support an aircraft CO2 standard. Furthermore, PIANO
has contributed to several real-world design projects, including internal Airbus conceptual studies of the
UHCA (a precursor to the A380). It allows for user factor analysis on a multitude of aircraft performance
characteristics represented by over 30 user factor variables. These user factors are straightforward multipliers
affecting drag, mass, specific fuel consumption, structural weight, and take-off performance, among others.

PIANO focuses on conventional, commercial, subsonic aircraft certified to civil standards. It has the
ability for clean sheet design or modification of current fleet aircraft through the use of over 250 parameters

8 of 20

American Institute of Aeronautics and Astronautics



including geometry and performance characteristics. It is, however, a commercially-licensed tool containing
sensitive aircraft specific data. Thus, all data presented in this paper will strictly adhere to the terms and
conditions of the ICCT license agreement.

A representative STA aircraft from the PIANO aircraft database (2009 data set) representing a typical
and widely used vehicle was used as the baseline type for the studies on the impact of mission specification
changes. Improvements resulting from technologies representing advancements believed to be available in
the 20205 time frame were applied as efficiency improvements within PIANO (μ values in Table 1). These
technologies were applied as improvements in various user factors within the software package representing
aerodynamics, thermal and propulsive efficiencies, and structural efficiency. This advanced aircraft was
optimized using the PIANO optimization routine with the objective of minimizing fuel burn by changing
the following design variables as seen in Table 4: MTOW , wing area, reference thrust per engine, AR, and
wing sweep angle. The optimization constraints for range at maximum structural payload cruise Mach, and
TOFL were maintained as in the original aircraft values and are also listed in Table 4. A diagram of the
baseline aircraft is shown in Figure 3.

Table 4. Deterministic optimization variables and constraints.

Lower Bound Upper Bound Constraint Value
Variables

MTOW (kg) 150,000 300,000 N/A
Wing Area (m2) 310.0 770.0 N/A

Reference Thrust per Engine (kN) 128.8 320.3 N/A
AR 4.0 14.0 N/A

Wing Sweep (degrees) 0.0 45.0 N/A
Constraints

Maximum Payload Range (Km) N/A N/A 10,384
TOFL (m) N/A N/A 3,069

Cruise Mach Number N/A N/A 0.840

1. Design Mission Specifications: Sensitivity Analysis

The influence of changes in mission specification including range (range at maximum payload), cargo mass
capacity, cruise Mach, and TOFL was quantified via sensitivity analysis. Each of the above performance
criteria was altered by increments of ±10 % from the the values of the baseline aircraft. The Mach number
was altered by increments of 0.02. At each increment, the aircraft was re-optimized given the variables listed
in Table 4 with constraints adjusted accordingly.

Range at Maximum Payload Maximum range at maximum payload (R1) was reduced from 100 % to
50 % of the baseline specification in 10 % increments. At each new range, the aircraft was then re-optimized
given the remaining variables and constraints listed in Table 4.

Cargo Mass Capacity Maximum cargo mass capacity, defined as

Cargomax = MZFW − OEW − PAX, (2)

was reduced from 100 % to 50 % of the baseline specification in 10 % increments, with each new cargo
capacity aircraft then re-optimized.

Cruise Mach Number Cruise Mach number was varied at 0.02 increments from 0.64 to 0.86 with re-
optimization.

Take-off Field Length TOFL was varied at 10 % increments from 70 % to 140 % of the baseline value
with the resultant TOFL aircraft re-optimized.
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Figure 3. Optimized aircraft used with PIANO (left). Comparison of the constructed PASS baselines (grey) to
the published Boeing top views (blue outline). B737-800 with winglets appears on the top and the B777-200ER
on the bottom (right). Aircraft have been scaled to fit in the Figure.

2. Design Mission Specifications: Relative Impact of Technology and Design

To quantify the effects and varying combinations of technology advancements and design mission constraints,
eight (including the baseline aircraft with all three areas of improvement discussed earlier in this section)
different scenarios were compared in which the baseline aircraft was optimized with either the projected
aerodynamic, SFC, or structural efficiency improvements. To these three optimized aircraft, a midpoint
combination of range, cargo, and cruise Mach number reduction was applied and each aircraft again re-
optimized. For example, an advanced aircraft with technology improvements resulting in 15 % structural
weight savings was modified with design changes of 30 % reduction in maximum payload range, 30 %
reduction in cargo mass capacity, and a reduction of cruise Mach number to 0.74. Although our internal
analysis revealed that a cruise Mach number 0.70 resulted in the best fuel savings, 0.74 was selected, as it
would allow for 5 % greater speed for less than 0.5 % penalty in fuel burn at maximum payload range. In
addition, the baseline aircraft with no technological advancements was optimized with only reductions in
design specifications for comparison. Table 5 contains a matrix of the various scenarios used in this part of
the study.

III. Results

This section is divided into two major portions that each deal with results related to (i) the probabilistic
analysis and design of future aircraft configurations with uncertain technology and technology integration
effectiveness, and (ii) the consideration of mission specification changes in the design of future aircraft to
minimize fuel burn. We begin this section with a discussion of the first topic and conclude it with a look at
the potential of mission specification changes.

A. Probabilistic Analysis and Design of Future Aircraft

In this section we present the results of analyzing and designing future aircraft (2020 and 2030, SA and
STA) using three separate approaches. First, we leverage the results produced for the LTTG report.5 These
results are based on the deterministic resizing/optimization of the baseline aircraft satisfying the baseline
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Table 5. Technology and design mission specification matrix. Aerodynamic factor includes both induced and
viscous drag. Range is measured at maximum payload.

Improvement Due to Technology Design Constraints

Package Aerodynamic SFC Structural Range Maximum Cargo Cruise

Designation Factor (factor) (factor) (Km) Capacity (Kg) Mach

Aero+Engine+Structure 0.96 0.8256 0.85 10,384 54,975 0.84

Aero 0.96 0.0 0.0 10,384 54,975 0.84

Engine 0.0 0.8256 0.0 10,384 54,975 0.84

Structure 0.0 0.0 0.85 10,384 54,975 0.84

Aero+Design 0.96 0.0 0.0 7,269 47,084 0.74

Engine+Design 0.0 0.8256 0.0 7,269 47,084 0.74

Structure+Design 0.0 0.0 0.85 7,269 47,084 0.74

Design 0.0 0.0 0.0 7,269 47,084 0.74

mission with pre-specified technology improvements for the appropriate time frame and aircraft class. We
then carry out a large number of MC re-sizings/optimizations based on varying the technology improvement
and interaction values. The statistics of the resulting set of optimizations are presented and contrasted with
the LTTG approach where a single aircraft was designed deterministically. Lastly, we pursue OUU where
the aircraft are resized/optimized in order to minimize the probabilistic measure presented in Equation 1.
In other words, full knowledge of the potential variability in technology improvements and their interactions
is accounted for in the design process which attempts to optimize a linear combination of the expected value
of the fuel burn metric and its standard deviation. The intent in this last set of optimizations is to create
designs that are robust with respect to variations in the probabilistic technology assumptions: can we trade
a small amount of expected performance for much lower variability in the expected performance?

1. Monte Carlo Simulations

Monte Carlo simulations consisting of approximately 15,000 optimizations (cases that did not converge or
did not meet constraints were excluded) were performed for each of the four scenarios. With each design
case, every technology pdf was randomly sampled and the resulting multipliers were applied to the baseline
aircraft. These technology enhanced aircraft were then optimized for minimum fuel burn, as described in
the methodology above, while tabulating important parameters of each redesigned airplane. This data set
included the resulting fuel burn (objective function) as well as physical characteristics of the design and
performance metrics. As the number of samples increased, both the mean and standard deviation of the
resulting fuel burn data set were seen to converge quickly. Figure 4 depicts the rapid convergence of these
metrics over the growing data set.

The MC data set was post-processed in two ways: the statistics of the resulting fuel burn values were
observed as a way of determining the effect of the stochastic technology introduction, and several of the
resulting characteristics of each aircraft were plotted against their respective fuel burn values to assess
possible correlations. First, histograms were constructed from the fuel burn data, as seen in Figure 5. The
resulting fuel burn distributions appear nearly gaussian in nature, and their mean and standard deviations
appear both in the figure and in Table 6 for completeness. For comparison, the LTTG deterministic value
attained for each scenario also appears in the figures as a vertical, dotted line. As expected, the MC
distributions surround the LTTG values with a mean slightly higher than the LTTG value itself. This is due
to the specification of the interaction parameters, which in nearly all cases resulted in performance penalties.
Therefore, the expected values when including the uncertainty in the technology assumptions are 0.7 %,
1.4 %, 1.1 %, and 1.8 % higher than their LTTG counterparts for the SA 2020, SA 2030, STA 2020, and
STA 2030 scenarios, respectively. Note that even with the inclusion of interaction effects (as the authors
have modeled them) result in only mild overall performance detriments. Also note that the distributions
exhibit corresponding standard deviations representing 2.7 %, 8.0 %, 3.9 %, and 5.5 % of their mean values.
The MC simulations, therefore, reveal the importance of technology introduction timelines. Sluggish rates
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Figure 4. Demonstration of the typical MC convergence behavior for the mean and standard deviation. The
scenario shown is SA 2020.

of technology introduction (being closer to the more pessimistic end of the technology pdfs) could result
in aircraft with fuel burn levels nearer to a standard deviation worse than the reported expected values
above. The inverse is also true, as aggressive pursuit of technology advancements could result in aircraft
with improved performance at levels well beyond even the deterministic LTTG estimates.

Table 6. Compilation of fuel burn results for the three different procedures. Values given in kg/ATK.

MC OUU LTTG
Samples μ σ μ σ Deterministic

SA 2020 14713 0.1085 0.0029636 0.11067 0.0034033 0.10775
SA 2030 14886 0.1024 0.0082268 0.11212 0.0052964 0.10099
STA 2020 14894 0.1035 0.0040038 0.10887 0.0023419 0.10241
STA 2030 14993 0.0926 0.0051324 0.11145 0.0047845 0.09099

Figures 6-9 contain various aircraft characteristics from the MC optimized configurations plotted against
their corresponding fuel burn values. Each point in the scatter plots represents a single optimized aircraft
configuration from the data set. By viewing the data in this manner, correlations between certain parameters
and the fuel burn can be discerned.

Many of the noticeable trends are intuitive and agree with those expected from typical aircraft design
experience. Maybe the most obvious example is the relationship between the SFC and the fuel burn: the
lower the rate at which the engine burns fuel, the lower the resulting fuel burn for a mission. This is also
directly related to lowering the thrust required by the engines. Similarly, reducing the MTOW of the aircraft
will result in a lighter structure which requires less fuel to travel a constant mission. For the SA scenarios, it
is notable that PASS predicts very little correlation between the fuel burn performance of the aircraft and the
noise exceedance (increment in dB above allowable Stage 4 limits) or the NOX exceedance (increment in kg
above CAEP 4 allowable limits). However, for the STA scenarios, aircraft with better fuel burn performance
are expected to display much better NOX characteristics. For the STA 2030 scenario, the aircraft sacrifice
some performance in noise while attaining stronger fuel burn performance.

2. Optimization Under Uncertainty

OUU was performed for each of the 4 future scenarios using a two-level nested approach where the DAKOTA
framework was responsible for driving the optimization (using 19 design parameters, x), and a Monte Carlo
inner loop was responsible for sampling the technology and interaction pdfs to generate statistical data for
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Figure 5. Comparison of the MC, OUU, and LTTG results for all four scenarios.

the cost and constraint functions. The objective of each design is to minimize the cost function in Equation 1
subject to the same set of constraints as the MC optimizations (Table 3). The constraints for each OUU were
imposed on the mean values of the constraint functions derived from the Monte Carlo samples computed in
each function evaluation. The cost and constraint function values were then fed back to the top level where
DAKOTA, using the NPSOL gradient based optimizer, selects a new design parameter set and the process
is repeated until a converged optimum is reached.

The intent of this OUU effort is to quantify the amount of performance in the fuel burn metric that
must be traded off in order to reduce the variability (as measured by the standard deviation) in the aircraft
performance induced by uncertainties in the technology improvements and the interactions between the
technologies. In this work, we present our preliminary findings for a given weighting between the actual
performance (mean of the fuel burn metric, μ) and the variability (standard deviation of the fuel burn
metric, σ), β = 4. Further work is needed to refine these results and to better assess the design landscape.

The high number of design variables (approximately 20), constraint functions (approximately 19), and
random technology variables (between 8 and 10) present a challenging OUU problem. Moreover, to generate
results suitable for comparison with the Monte Carlo data set and the previous results from the LTTG
effort, it was necessary to place tight bounds on the constraint functions, gi, to ensure that the converged,
robust aircraft configuration was able to fly the same mission (range, TOFL, etc.) as the baseline aircraft.
This presented significant challenges, as steep gradients for these constraint functions exist with respect to
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Figure 6. MC results for the SA 2020 scenario plotted against various aircraft characteristics. Each data point
in the figures represents a single, optimized configuration.

the design variables, and any given sampling of the technology and interaction pdfs has dramatic effects
as well. For example, an improvement of 2 % in the propulsive efficiency alone may add several hundred
miles to the cruise range of the candidate aircraft. To overcome these difficulties, a brute force method was
employed: as many as 60,000 inner loop samples were taken for each function call by DAKOTA/NPSOL.
Given that evaluations of candidate aircraft with sampled technology improvements and interactions require
only a fraction of a second in PASS, such a large number of function evaluations in each inner loop was fea-
sible. Typical optimizations (for 20 design parameters, 10 random variables, and 19 probabilistic constraint
functions) required anywhere between 10 and 40 major design iterations and a total of 200-800 function
evaluations. Each of these function evaluations required the accurate computation of the mean value and
standard deviation of the fuel burn metric, as well as the mean values of all constraint functions, gi((x)).
For this purpose, depending on the number of random variables in each problem, we carry out anywhere
between 30,000 and 60,000 function evaluations to ensure that the statistics are fully converged. This is
particularly important for the computation of the probabilistic cost and constraint function gradients, which
are obtained via finite differencing.

The OUU results for each scenario are also included in Figure 5. Again, each histogram contains the
LTTG results5 in a dashed black line, the results of the MC optimizations in a blue histogram, and the
outcome of the OUU procedure in a solid black line. Values of the mean (μ) and standard deviation (σ) for
the OUU and MC results are also included in each Figure.

The trends are fairly apparent. While the LTTG results are very close to the mean of the MC histograms,
it is clear that the level of uncertainty in the resulting fuel burn metric is significant. Given the technology
improvement assumptions and the consideration given to the technology interactions (both modeled with
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Figure 7. MC results for the SA 2030 scenario plotted against various aircraft characteristics. Each data point
in the figures represents a single, optimized configuration.

pdfs), it is now possible to gain insight into the probability with which a certain level of performance will
be achieved. The standard deviation of the histograms is smallest for the SA 2020 aircraft, for which the
uncertainties in the technology assumptions are perhaps better quantified. They are highest for the SA 2030
case where the uncertainties in the technology assumptions are largest. Similar trends can be observed for
the STA vehicles.

These results could already be used to enhance the definition of the goals established in the LTTG report:5

instead of a line established by using the expertise of the IEs to quantify the uncertainties, a confidence
interval could be chosen and the goal uncertainty bands could be directly obtained from these graphs.
Moreover, these uncertainties incorporate the technology integration penalties that were not considered by
the IEs. Note that all vehicles in the MC histograms are such that they meet the full mission constraints
(range, TOFL, etc.) Looking at the LTTG designs, if they were to only partially realize the technology
improvements for the particular vehicle class and time frame, they would violate some of the important
mission constraints that the MC designs satisfy.

The results of the OUU cases (shown by solid black lines in Figure 5) also exhibit the right trends. While
they represent a particular weighting of mean and standard deviation values of the fuel burn metric (given
by β = 4), the effect of the OUU is to trade some effective performance (slight increase in the fuel burn
metric) for a reduced standard deviation in the results (a design that is more robust in terms of how much
variability in the output results from the uncertain technology and technology interaction landscape). Of
course, the appropriate weighting between the desired robustness and the amount of performance conceded
can only be determined by additional OUUs with different values of the weighting parameter, β. We intend
to pursue a better quantification of these effects in future work. Furthermore, an interesting area that was
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Figure 8. MC results for the STA 2020 scenario plotted against various aircraft characteristics. Each data
point in the figures represents a single, optimized configuration.

not investigated in this work but could result from this OUU framework are the post-optimality sensitivities:
how much will the mean and standard deviation of the fuel burn metric change when various parameters in
the design are altered? Which of these parameters are most influential?

This framework establishes the possibility to answer such questions. It is our intention to refine the OUU
framework within DAKOTA in order to significantly speed up these calculations (using standard procedures
for uncertainty quantification and OUU such as methods based on stochastic collocation and polynomial
chaos) and to be able to answer questions from multiple what if scenarios.

B. Design with Mission Specification Changes

The results of redesigning future aircraft with various combinations of technology improvements and mission
specification changes are presented in this section. We begin with an analysis of the sensitivity of the
fuel burn metric (kg/ATK) to variations in the mission specifications and conclude the discussion with an
assessment of the potential for mission specification changes to make up for potential technology shortfalls
in the STA 2020 scenario.

1. Sensitivity Analysis

The sensitivities of the fuel burn metric with respect to mission specification parameters are presented below
by isolating the effect of each change. For each change in the mission, the effect on the fuel burn metric is
presented in Figure 10.

16 of 20

American Institute of Aeronautics and Astronautics



Figure 9. MC results for the STA 2030 scenario plotted against various aircraft characteristics. Each data
point in the figures represents a single, optimized configuration.

Maximum Payload Range Reducing R1 provided significant fuel savings. Reducing R1 by one km saved
approximately 5.7 kg of fuel, or 0.105 % fuel per percent reduction in range (ATK basis).

Maximum Cargo Capacity On an ASK basis, reducing cargo capacity also reduced fuel burn, on the
order of 0.3 kg fuel per kg of cargo capacity reduction. This corresponds to a 0.16 % fuel burn reduction
per percent of cargo reduction. On an ATK basis, the fuel efficiency of the aircraft degrades because at
maximum range at maximum payload the mass of payload carried falls faster than fuel burn improves.

Cruise Mach The relationship between fuel burn and Mach number is parabolic with a steep reduction
followed by a tailing off of improvement. The most efficient design occurred at the lowest speed investigated
(13.1 % reduction in fuel burn for Mach 0.70 on an ATK basis). Dropping cruise Mach to 0.74 reduces fuel
burn by 11.4 %, while further reducing it to 0.70 provides only an additional 1.7 % fuel savings. Linear
regression of the steep, higher Mach portion (0.78-0.86) of the results reveals a 1.5 % reduction in fuel burn
per percent reduction in cruise speed.

TOFL For the aircraft chosen, this analysis suggests there is little potential to increase efficiency by
changes in TOFL. Increasing TOFL up to 140 % of the baseline value resulted in minimal fuel savings (<
1 %). However, decreasing TOFL has a large negative impact, as high as a 5.5 % fuel penalty for a 30 %
reduction in TOFL (ATK basis). Linear regression of TOFL reduction shows 0.18 % fuel penalty per percent
reduction in TOFL.
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(a) Sensitivity with respect to design R1 range (b) Sensitivity with respect to cargo capacity

(c) Sensitivity with respect to design Mach number (d) Sensitivity with respect to TOFL

Figure 10. Finding the sensitivity of block fuel relative to changes in various design parameters.

2. Ability of Mission Specification Changes to Compensate for Technology Shortfalls

ATK Basis A second design sensitivity analysis, the ability of changes in mission specifications to com-
pensate for a failure to meet technology goals, was also investigated. Three aircraft, each meeting only one
of the individual TS2 2020 technology targets (propulsion, aerodynamics, or structures) were paired with
aggressive modifications to the aircraft mission (-30 % R1, -30 % cargo capacity, Mach number to 0.74)
and compared to the reference STA 2020 aircraft (TS2) meeting all technology goals. Isolating technology
improvements in this way showed that efficiency improvements for twin-aisle aircraft in 2020 were domi-
nated by reductions in SFC. Although disadvantaged on a fuel per ATK metric due to the reduction in
cargo capacity, engine improvements coupled with mission specification changes resulted in equivalent fuel
savings to the full technology package on an ATK basis. As can be seen in Figure 11a, changes in mission
specification were insufficient to offset a failure to achieve SFC targets. The fuel burn of aircraft with only
structural or aerodynamic improvements and changed mission specifications was 17 % and 18 % higher than
the reference TS2 case, respectively.

ASK Basis Improvements in fuel efficiency due to changes in mission specification were particularly large
on a seat-km basis. For the full suite of design changes, fuel burn per ASK fell by 18 - 21 % (see Figure 11b)
relative to the cases where only a single technology goal was met on the reference aircraft. A manufacturer
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(a) On an ATK basis (b) On an ASK basis

Figure 11. Relative impacts of technology improvements and mission specification changes.

managing to meet only one of the technological goals envisioned in the TS2 scenario could compensate
through changes in mission specification in all cases. Even larger fuel burn reductions could be made when
only SFC targets were met, with the combined SFC improvements and design mission changes reducing
fuel burn per ASK by 14 % below the baseline case (TS2).

IV. Conclusions

An approach for quantifying the impact of (i) uncertain technology improvements, (ii) uncertain in-
teractions between technologies included in a particular design, and (iii) changes to the design mission
specifications on a fuel burn metric (kg/ATK) has been developed and presented. The method is based on
the use of conceptual-level analysis and design tools and the propagation of uncertainties via Monte Carlo
sampling and optimization and a technique for robust design borrowed from the OUU literature.

The probabilistic analysis offered several meaningful conclusions for the trends in commercial aircraft fuel
burn. With the addition of pdfs in the optimization procedures, the effects of input uncertainties could be
considered for the SA and STA in the 2020 and 2030 time frames. The MC optimization study revealed that
the expected values of the fuel burn metric, when including the uncertainty in the technology assumptions,
are 0.7 %, 1.4 %, 1.1 %, and 1.8 % higher than their deterministic LTTG counterparts for the SA 2020, SA
2030, STA 2020, and STA 2030 scenarios, respectively. This indicates that only relatively small penalties
on overall fuel burn performance occur due to the introduction of interaction effects not accounted for in
the LTTG report. Furthermore, the MC results also exhibit corresponding standard deviations representing
2.7 %, 8.0 %, 3.9 %, and 5.5 % of their mean values. These statistics emphasize the relative importance
of technology introduction timelines: slower rates of technology advancement could result in large penalties
while aggressive development could create large fuel burn reductions by 2020 and 2030. Moreover, these
statistics can serve to better inform those involved in the establishment of future goals and/or standards by
leveraging the information to ensure that goals/standards are set based on a chosen probability of attainment.
The MC data also agreed with intuitive correlations in aircraft design, namely that better engines and lighter
structures lead to lower fuel burn and the proportion in which each technology improvement is responsible
for performance benefits. For the SA scenarios, there were no adverse effects in noise or NOX apparent with
improving fuel burn, however, the STA scenarios showed slight detrimental effects. Further investigation
into the impacts of fuel burn reduction on other environmental factors is required.

A framework for developing robust designs that may be used to minimize the future variability caused by
uncertainty in the technology and technology interactions has been presented. For a given weighting of the
mean and standard deviation of the performance metric, optimal robust designs have been presented which
trade some performance for reduced variability in the designs. These results were achieved by minimizing a
linear combination of the mean and standard deviation of the fuel burn metric, and further studies are being
pursued to explore the space of potential weightings that will result in the best possible solutions.
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For the STA reference aircraft selected, changes in cruise speed provided the largest benefit of the various
mission specification changes investigated. Lowering the Mach number to 0.74 reducing fuel burn per unit
payload by 12 %. Range and cargo reductions provided more modest benefits: reducing R1 by 30 % lowered
fuel burn by 4 - 5 % depending on the metric, and a 10 % reduction in cargo capacity improved fuel efficiency
by about 1 % on a seat-km basis. For the reference aircraft chosen, TOFL appears to be highly optimized:
increasing TOFL did not appreciably reduce fuel burn for a R1 mission, while decreasing TOFL strongly
degraded fuel efficiency. Aggressive changes in mission specification were able to compensate for shortfalls
in technology development, particularly when SFC targets were met and when measured on an ASK basis.
Collectively, these results suggest that manufacturers facing technological uncertainty and high development
costs may choose to comply with a CO2 standard by lowering Mach number and design range rather than
through technology upgrades alone. The system-wide effects of such changes to design range and cruise
Mach number are being studied.
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