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Designing quieter, more e�cient aerospace systems will require coupled, high-fidelity

analysis and optimization in the areas of aerodynamics and aeroacoustics. This paper

presents a design methodology for addressing these two disciplines within a single frame-

work. After detailing the governing flow and time-accurate continuous adjoint equations

for unsteady aerodynamics, a continuous adjoint formulation for the control of noise is

developed. In order to obtain the required remote sensitivity information for an o↵-body

observer of noise, the adjoint formulations for aerodynamics and aeroacoustics are related

through a coupling boundary condition. The result is an e�cient, adjoint-based methodol-

ogy for design problems involving both aerodynamic performance and noise control. Fur-

thermore, the coupled-adjoint method could be applied to other multiphysics problems

where adjoint sensitivities are desired.

Nomenclature

V ariable Definition

c Speed of sound
~d Force projection vector
f Function describing the acoustic surface, f = 0
j
S

Scalar function defined at each point on S
~n Normal vector
p Static pressure
p1 Freestream pressure
p0 Acoustic pressure, p0 = p � p1
t
o

Initial time
t
f

Final time
~u

b

Control volume boundary velocity (mesh velocity)
~v Flow velocity vector
v1 Freestream velocity
~A Inviscid flux Jacobian matrices
A

z

Projected area in the z-direction
C

D

Coe�cient of drag
C

L

Coe�cient of lift
C

SF

Coe�cient of side-force
E Total energy per unit mass
~F Euler convective fluxes
~F

mov

Euler convective fluxes in ALE form
H Stagnation enthalpy
¯̄I Identity matrix
I Objective function for the aeroacoustic problem
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J Objective function for the aerodynamic problem
M1 Freestream Mach number
N (⇢0) Governing wave equation for acoustics
Q Source term(s)
R(U) System of governing flow equations
S Solid wall flow domain boundary (design surface)
T Time interval, t

f

� t
o

U Vector of conservative variables
W Vector of characteristic variables
↵ Angle of attack
� Sideslip angle
� Ratio of specific heats, � = 1.4 for air
⇢ Fluid density
⇢1 Freestream density
⇢0 Acoustic density, ⇢0 = ⇢� ⇢1
� Acoustic adjoint variable
~' Flow adjoint velocity vector
� Domain boundary
 Vector of flow adjoint variables
⌦ Problem domain

Mathematical Notation

~b Spatial vector b 2 Rn, where n is the dimension of the physical cartesian space (in general, 2 or 3)
B Column vector or matrix B, unless capitalized symbol clearly defined otherwise
~B ~B = (B

x

, B
y

) in two dimensions or ~B = (B
x

, B
y

, B
z

) in three dimensions
r(·) Gradient operator
r · (·) Divergence operator
r2(·) Laplacian operator
@

n

(·) Normal gradient operator at a surface point, ~n
S

·r(·)
r

S

(·) Tangential gradient operator at a surface point, r(·) � @
n

(·)
· Vector inner product
⇥ Vector cross product
⌦ Vector outer product
BT Transpose operation on column vector or matrix B
�(·) Denotes first variation of a quantity, unless otherwise specified as the Dirac delta function

I. Introduction and Motivation

Environmental pressures to decrease fuel burn, emissions, and noise continue to drive the need for
quieter, more e�cient aircraft and aircraft propulsion technology. These environmental challenges also

o↵er an opportunity for the aircraft designer to take advantage of synergistic interactions between components
of the configuration design. One example of this interaction e↵ect involves the installation of next generation
propulsion systems, such as the open rotor engine, which may be more e�cient at the cost of increased
noise. New proposals for unconventional aircraft configurations or engine placement may target enhanced
aerodynamic performance, noise shielding, or provide safety in the event of blade-out. These complex
systems will require multidisciplinary, high-fidelity analysis and system-level integration studies in order
to assess their viability. Other challenges might include reducing airframe or jet noise without incurring
performance penalties for a particular vehicle.

The development of revolutionary technology comes hand in hand with the issue of how to optimize
and integrate it. Successful deployment of new technology will require novel multidisciplinary design, anal-
ysis, and optimization (MDAO) approaches for complex aerospace systems that are rooted in physics-based
predictions. As mentioned, two disciplines of particular interest are aerodynamics and aeroacoustics. High-
fidelity analysis and design tools will be needed to understand the interaction between these disciplines and
to aid the designer in extracting the best performance with minimal noise penalties. With a final objective
of performing shape design, computational fluid dynamics (CFD) and computational aeroacoustics (CAA)
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are two candidate toolsets for this type of multidisciplinary research.
In the context of optimal shape design, adjoint-based formulations have a rich history in aeronautics,

and their e↵ectiveness for the design of aircraft configurations in cruise and other steady problems is well
established [1–3]. Less common and more di�cult are adjoint formulations for unsteady aerodynamic prob-
lems, in part due to prohibitive data storage requirements. Recent work has demonstrated the viability of
unsteady adjoint approaches for airfoil applications [4] and more complex flows on dynamic meshes [5].

⌦
�1

S
~n

S

~n�1

Figure 1. Notional schematic of the flow do-

main, ⌦, and the disconnected boundaries with

their corresponding surface normals, S and

�1.

Sound is an inherently unsteady phenomenon, and there
exists a wealth of literature on methods for aeroacoustic anal-
ysis. While it is possible to directly compute acoustics using
CFD alone, the two disciplines are often considered sepa-
rately, as they will be in this article, for computational e�-
ciency, accuracy, or flexibility reasons. Typical CAA solution
procedures include coupling CFD solvers to finite element or
boundary integral methods for solving the wave equation in
order to compute an acoustic response. For instance, if the
noise at some far-field location is desired, extending a com-
putational mesh of fine enough resolution to preserve small
acoustic waves many body-lengths away would be computa-
tionally infeasible. When approached in this manner, aeroa-
coustic analysis becomes a coupled, multiphysics problem
requiring two separate partial di↵erential equation (PDE)
solvers for each discipline.A benefit of this approach is the
flexibility to use higher fidelity (CFD) where needed to cap-
ture sound generation processes while leaving the propaga-
tion, reflection, or scattering to a less costly model (CAA).
While the analysis problem has received much attention, de-
sign problems involving aeroacoustics have not, and there are limited examples of techniques that consider
acoustics for shape design [6]. In a multiphysics scenario, it might be unclear how to couple the disciplines
in order to exchange the sensitivity information that is needed for design.

With this article, we present time-accurate continuous adjoint formulations for both aerodynamics and
aeroacoustics and couple them together to enable shape design using remote sensitivities for controlling noise
at an o↵-body observer location. The key to coupling the disciplines is a new adjoint boundary condition
relating the local adjoint variables at the interface between the CFD and CAA domains. The coupled-adjoint
technique is demonstrated through an exercise in aeroacoustic shape design.

The paper is organized as follows. Section II details the governing equations for the flow problem
along with a time-accurate continuous adjoint formulation for aerodynamic shape design. In Section III, an
inhomogeneous wave equation governing aerodynamically generated sound is described. This section also
contains a continuous adjoint formulation for the control of noise. The method for coupling the aerodynamic
and aeroacoustic adjoint problems through a boundary condition is presented in Section IV. Sections V & VI
contain numerical implementation details and results, including a verification and validation of the unsteady
flow and adjoint equations, as well as a demonstration of obtaining remote sensitivities for controlling the
noise induced by a pitching airfoil in still air.

II. Governing Flow and Adjoint Equations for Unsteady Aerodynamics

This section contains a summary of the governing flow equations and the corresponding time-accurate
continuous adjoint formulation for the aerodynamic analysis and design portion of this MDAO problem.

A. Description of the Aerodynamic Problem

Ideal fluids are governed by the Euler equations. In our particular problem, these equations are considered
in a domain, ⌦, bounded by a disconnected boundary which is divided into a far-field component, �1, and
a solid wall boundary, S, as seen in Fig. 1. The surface S will also be referred to as the design surface, and
it is considered continuously di↵erentiable (C1). Normal vectors to the boundary surfaces are directed out
of the domain by convention.
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We are interested in the time-accurate fluid behavior around aerodynamic bodies in arbitrary motion for
situations where viscous e↵ects can be considered negligible. The governing flow equations in the limit of
vanishing viscosity are the compressible Euler equations. These conservation equations can be expressed in
an arbitrary Lagrangian-Eulerian (ALE) di↵erential form as

8

>

<

>

:

R(U) = @U

@t

+ r · ~F
mov

= 0, in ⌦, t
o

 t  t
f

(~v � ~u
b

) · ~n
S

= 0, on S, t
o

 t  t
f

(W )+ = W1, on �1, t
o

 t  t
f

(1)

where

U =

8

>

<

>

:

⇢

⇢~v

⇢E

9

>

=

>

;

, ~F
mov

=

8

>

<

>

:

⇢(~v � ~u
b

)

⇢~v ⌦ (~v � ~u
b

) + ¯̄Ip

⇢E(~v � ~u
b

) + p~v

9

>

=

>

;

, (2)

⇢ is the fluid density, ~v = {u, v, w}T is the flow velocity, ~u
b

is the boundary velocity for a control volume in
motion (mesh velocity), E is the total energy per unit mass, and p is the static pressure. The second line of
Eqn. 1 represents the flow tangency condition at a solid wall, and the final line represents a characteristic-
based boundary condition at the far-field where the fluid state at the boundary is updated using the state at
infinity depending on the sign of the eigenvalues. The boundary conditions take into account any boundary
velocity due to grid motion. The temporal conditions will be problem dependent, and for purposes of this
article, we will be interested in periodic flows where the initial and terminal conditions do not a↵ect the
time-averaged behavior. In order to close the system of equations after assuming a perfect gas, the pressure
is determined from

p = (� � 1)⇢



E � 1

2
(~v · ~v)

�

, (3)

and the stagnation enthalpy is given by

H = E +
p

⇢
. (4)

B. Surface Sensitivities via a Time-Accurate Continuous Adjoint Approach

The objective of this section is to describe the way in which we quantify the influence of geometric modifi-
cations on the pressure distribution at a solid surface in the flow domain.

A typical shape optimization problem seeks the minimization of a certain cost function, J , with respect
to changes in the shape of the boundary, S. We will concentrate on functionals defined as time-averaged,
integrated quantities on the solid surface,

J =
1

T

Z

t

f

t

o

Z

S

j
S

ds dt, (5)

where j
S

is a time-dependent scalar function defined at each point on S.

�S~n
S

S

S0

~x

Figure 2. An infinitesimal shape deformation in

the local surface normal direction.

Therefore, the goal is to compute the variation, or
change, of Eqn. 5 caused by arbitrary but small (and
multiple) deformations of S and to use this information
to drive our geometric changes in order to find an opti-
mal shape for the design surface, S. This leads directly
to a gradient-based optimization framework. The shape
deformations applied to S will be infinitesimal in nature
and can be described mathematically by

S0 = {~x + �S(~x)~n
S

(~x), ~x 2 S}, (6)

where S has been deformed to a new surface S0 by apply-
ing an infinitesimal profile deformation, �S, in the local normal direction, ~n

S

, at a point, ~x, on the surface,
as shown in Fig. 2.
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Surface shape deformations will result in variations of the pressure distribution along the surface, so we
will focus on pressure-based functionals with the form

j
S

= ~d · (p~n
S

). (7)

The vector ~d is the force projection vector, and it is an arbitrary, constant vector which can be chosen to
relate the pressure, p, at the surface to a desired quantity of interest. For aerodynamic applications, likely
candidates are

~d =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇣

1
C1

⌘

(cos ↵ cos �, sin ↵ cos �, sin �), C
D

Drag coe�cient
⇣

1
C1

⌘

(� sin ↵, cos ↵, 0), C
L

Lift coe�cient
⇣

1
C1

⌘

(� sin � cos ↵,� sin � sin ↵, cos �), C
SF

Side-force coe�cient
⇣

1
C1C

D

⌘

(� sin↵� C

L

C

D

cos↵ cos�,�C

L

C

D

sin�, cos↵� C

L

C

D

sin↵ cos�), C

L

C

D

L/D

(8)
where C1 = 1

2v2
1⇢1A

z

, v1 is the freestream velocity, ⇢1 is the freestream density, and A
z

is the reference
area. In practice for a three-dimensional surface, all positive components of the normal surface vectors in
the z-direction can be summed in order to calculate the projection A

z

. A pre-specified reference area can
also be used in a similar fashion, and this is an established procedure in applied aerodynamics.

The minimization of Eqn. 5 can be considered a problem of optimal control whereby the behavior of the
governing flow equation system is controlled by the shape of S with deformations of the surface acting as the
control input. Mathematically, the PDE-constrained optimization problem can be formulated as follows:

Minimize J = 1
T

R

t

f

t

o

R

S

~d · (p~n
S

) ds dt

such that R(U) = 0
(9)

Following the adjoint approach to optimal design, Eqn. 9 can be transformed into an unconstrained opti-
mization problem by adding the inner product of an unsteady adjoint variable vector,  , and the governing
equations integrated over the domain (space and time) to form the Lagrangian:

J =
1

T

Z

t

f

t

o

Z

S

~d · (p~n
S

) ds dt +
1

T

Z

t

f

t

o

Z

⌦
 TR(U) d⌦ dt, (10)

where we have introduced the adjoint variables, which operate as Lagrange multipliers and are defined as

 =

8

>

>

>

>

>

<

>

>

>

>

>

:

 
⇢

 
⇢u

 
⇢v

 
⇢w

 
⇢E

9

>

>

>

>

>

=

>

>

>

>

>

;

=

8

>

<

>

:

 
⇢

~'

 
⇢E

9

>

=

>

;

. (11)

Note that because the flow equations must be satisfied in the domain (R(U) = 0), Eqn. 5 and Eqn. 10 are
equivalent. To find the gradient information needed to minimize the objective function, we take the first
variation of Eqn. 10 with respect to small perturbations of the surface shape:

�J =
1

T

Z

t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z

t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z

t

f

t

o

Z

⌦
 T �R(U) d⌦ dt. (12)

It is important to note that the first two terms of Eqn. 12 are found by using a result from previous work by
the second author [7] based on di↵erential geometry formulas, and this is a key feature di↵erentiating the
current formulation from other adjoint approaches. The third term of Eqn. 12 can be expanded by including
the linearized version of the governing equations with respect to the small perturbations of the design surface
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(which induce perturbations in U),

�R(U) = �



@U

@t
+ r · ~F �r · (U ⌦ ~u

b

)

�

=
@

@t
(�U) + r ·

 

@ ~F

@U
�U

!

�r ·


@(U ⌦ ~u
b

)

@U
�U

�

=
@

@t
(�U) + r ·

⇣

~A � ¯̄I~u
b

⌘

�U, (13)

along with the linearized form of the boundary condition at the surface,

�~v · ~n
S

= �(~v � ~u
b

) · �~n
S

� @
n

(~v � ~u
b

) · ~n
S

�S, (14)

where ~A is the Jacobian of ~F using conservative variables, @

~

F

@U

. In the first line of Eqn. 13, the terms involving
the grid velocity have been separated from the traditional Euler fluxes. Eqn. 13 can now be introduced into
Eqn. 12 to produce

�J =
1

T

Z

t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z

t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z

t

f

t

o

Z

⌦
 T

@

@t
(�U) d⌦ dt

+
1

T

Z

t

f

t

o

Z

⌦
 Tr ·

⇣

~A � ¯̄I~u
b

⌘

�U d⌦ dt. (15)

By removing any dependence on variations of the flow variables (�p in this case), the variation of the
objective function for multiple surface deformations can be found without the need for multiple flow solu-
tions. This results in a computationally e�cient method for aerodynamic shape design within a large design
space, as the computational cost no longer depends on the number of design variables. We now perform
manipulations to remove this dependence. After changing the order of integration, integrating the third
term of Eqn. 15 by parts gives

Z

⌦

Z

t

f

t

o

 T

@

@t
(�U) dt d⌦ =

Z

⌦

⇥

 T �U
⇤

t

f

t

o

d⌦�
Z

⌦

Z

t

f

t

o

@ T

@t
�U dt d⌦. (16)

A zero-valued initial condition for the adjoint variables can be imposed, and assuming an unsteady flow
with periodic behavior, the first term on the right hand side of Eqn. 16 can be eliminated with the following
temporal conditions (the cost function does not depend on t

f

):

 (~x, t
o

) = 0, (17)

 (~x, t
f

) = 0. (18)

Now, integrating the fourth term of Eqn. 15 by parts yields

Z

t

f

t

o

Z

⌦
 Tr ·

⇣

~A � ¯̄I~u
b

⌘

�U d⌦ dt =

Z

t

f

t

o

Z

⌦
r ·
h

 T

⇣

~A � ¯̄I~u
b

⌘

�U
i

d⌦ dt �
Z

t

f

t

o

Z

⌦
r T ·

⇣

~A � ¯̄I~u
b

⌘

�Ud⌦ dt,

(19)

and applying the divergence theorem to the first term on the right hand side of Eqn. 19, assuming a smooth
solution, gives

Z

t

f

t

o

Z

⌦
 Tr ·

⇣

~A � ¯̄I~u
b

⌘

�U d⌦ dt =

Z

t

f

t

o

Z

S

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n
S

�Uds dt +

Z

t

f

t

o

Z

�1

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n
S

�Uds dt

�
Z

t

f

t

o

Z

⌦
r T ·

⇣

~A � ¯̄I~u
b

⌘

�Ud⌦ dt. (20)

With the appropriate choice of characteristic-based boundary conditions, the integral over the far-field bound-
ary can be forced to vanish. Combining and rearranging the results from Eqns. 15, 16 (after reversing the
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order of integration again), 17, 18 & 20 yields an intermediate expression for the variation of the cost function,

�J =
1

T

Z

t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z

t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z

t

f

t

o

Z

S

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n
S

�Uds dt

� 1

T

Z

t

f

t

o

Z

⌦



@ T

@t
+ r T ·

⇣

~A � ¯̄I~u
b

⌘

�

�U d⌦ dt. (21)

The surface integral in the third term on the right hand side of Eqn. 21 can be evaluated given our knowledge
of ~A, ~u

b

, the wall boundary condition, and the linearized wall boundary condition in Eqn. 14. By leveraging
previous derivation by the authors [8] with some small modifications (including time integration), it can be
shown that evaluating the surface integral and rearranging the variation of the functional gives

�J =
1

T

Z

t

f

t

o

Z

S

h

~d ·rp + (r · ~v)#+ (~v � ~u
b

) ·r(#)
i

�S ds dt

+
1

T

Z

t

f

t

o

Z

S

h

~d · ~n
S

� ~n
S

· ~'�  
⇢E

(~v · ~n
S

)
i

�p ds dt � 1

T

Z

t

f

t

o

Z

⌦



@ T

@t
+ r T ·

⇣

~A � ¯̄I~u
b

⌘

�

�U d⌦ dt,

(22)

where # = ⇢ 
⇢

+ ⇢~v · ~' + ⇢H 
⇢E

. Finally, by satisfying the system of PDEs commonly referred to as the
adjoint equations along with the admissible adjoint boundary condition that eliminates the dependence on
the fluid flow variations (�p), both the second and third terms on the right hand side of Eqn. 22 can be
eliminated:

8

<

:

@ 
@t

+
⇣

~A � ¯̄I~u
b

⌘

T

·r = 0, in ⌦, t
o

 t  t
f

~n
S

· ~' = ~d · ~n
S

�  
⇢E

(~v · ~n
S

), on S, t
o

 t  t
f

(23)

where a transpose operation has been performed on the adjoint equations. The variation of the objective
function becomes

�J =
1

T

Z

t

f

t

o

Z

S

h

~d ·rp + (r · ~v)#+ (~v � ~u
b

) ·r(#)
i

�S ds dt =
1

T

Z

t

f

t

o

Z

S

@J
@S

�S ds dt, (24)

where @J
@S

= ~d ·rp + (r ·~v)#+ (~v � ~u
b

) ·r(#) is what we call the surface sensitivity. The surface sensitivity
provides a measure of the variation of the objective function with respect to infinitesimal variations of the
surface shape in the direction of the local surface normal. With each physical time step, this value is
computed at every surface node of the numerical grid with negligible computational cost. Note that the final
expression for the variation involves only a surface integral and has no dependence on the volume mesh.

III. Governing Wave and Adjoint Equations for Aeroacoustics

In this section we detail the governing equation for aerodynamically generated sound and also present a
new continuous adjoint formulation for the control of noise.

A. Description of the Aeroacoustic Problem

We are interested in predicting and controlling the noise generated by aerodynamic surfaces that might be
in motion. For aeroacoustic problems, perturbations in density, ⇢0 where ⇢0(~x, t) = ⇢(~x, t) � ⇢1, form the
longitudinal waves that are perceived as sound. Consider the aerodynamic body in Fig. 3 which is immersed
in an unbounded volume of fluid, ⌦. A fictitious, near-field control surface, �

nf

, is placed near the body, and
the fluid domain is therefore divided into two regions, labeled ⌦1 and ⌦2. As a mathematical convenience,
we define the shape of �

nf

by a function, f = 0, such that f < 0 inside the body and f > 0 outside the
body. We also assume that r(f) is in the direction of the outward normal, such that r(f) = ~n�

nf

|r(f)|.
Furthermore, �

nf

can be in motion with arbitrary boundary velocity, ~u
b

.
Following the derivation by Ffowcs Williams and Hawkings [9], generalized formulations for the continuity

and momentum equation in an unbounded fluid can be obtained:

@⇢

@t

+ r · (⇢~v) = [⇢(~v � ~u
b

)](2)(1) ·r(f)�(f) in ⌦,

@

@t

(⇢~v) + r · (⇢~v ⌦ ~v + ¯̄Ip) =
h

⇢~v ⌦ (~v � ~u
b

) + ¯̄Ip
i(2)

(1)
·r(f)�(f) in ⌦,

(25)
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S

�
nf

, f = 0

⌦1, f < 0

⌦2, f > 0

Figure 3. Control surface (dashed

line), �
nf

, enclosing the physical body

surface, S. The fictitious control sur-

face is defined mathematically by a

function, f = 0.

where, in this case, �(f) is the Dirac delta function involving the

near-field surface and not the variation of f . The nomenclature [ ](2)(1)

represents the jump between regions ⌦2 and ⌦1. Eqn. 25 contains
general forms for an unbounded fluid that are valid everywhere in
space, and that if there are no discontinuities, the right hand sides
disappear and the usual conservation equations are recovered. The
terms appearing on the right hand sides can be thought of as sources
concentrated at the surface, �

nf

, which are required to maintain
conservation for the unbounded fluid.

We now replace the volume within ⌦1 by fluid at a mean state
with density ⇢1 and pressure p1 and evaluate the source terms
above. Since the mean stress state on both sides of �

nf

is the same,

the term ¯̄Ip1 would vanish during the subtraction involved with
the source term in the generalized momentum equation of Eqn. 25.
Therefore, it will be replaced by the term p0 which represents the fluc-
tuating components of the stress tensor. If �

nf

is made coincident
with the solid aerodynamic body, one can obtain the inhomogeneous
wave equation known as the classic Ffowcs Williams-Hawkings (FW-
H) equation. However, in our case, �

nf

is not coincident with the
body, and fluid may flow through this fictitious near-field, as there is
no solid body to enforce a no-penetration condition. By eliminating
⇢~v from the generalized mass and momentum equations, the permeable surface version of the FW-H equation
can be formulated as

@2⇢0

@t2
� c2r2⇢0 =

@

@t
{[⇢(~v � ~u

b

) + ⇢1~ub

] ·r(f)�(f)}�r ·
nh

⇢~v ⌦ (~v � ~u
b

) + ¯̄Ip0
i

·r(f)�(f)
o

+ r2T in ⌦, t > 0, (26)

where c is the constant speed of sound and T = ⇢~v ⌦ ~v + P � ¯̄Ia2⇢0 is the Lighthill stress tensor that
represents the di↵erence between the stress state in the real fluid and that in the acoustic medium. Here
we see that the propagation of sound generated by aerodynamic surfaces in arbitrary motion is governed
by the wave equation, and the sound generation processes are composed of three types of sources on the
right hand side: a mass displacement e↵ect by the surface with monopole character (thickness noise, first
term), a surface distribution of dipoles (loading noise, second term), and a distribution of quadrupole noise
sources throughout the volume exterior to the surface (third term). For simplicity in further development,
the source terms will be lumped together as a single term, Q, giving

@2⇢0

@t2
� c2r2⇢0 = Q in ⌦, t > 0. (27)

B. Continuous Adjoint Formulation for Controlling Aerodynamically Generated Noise

Consider the mathematical domain depicted by Fig. 4. We are interested in controlling the noise generated
by an aerodynamic body that is perceived at a certain permeable observer surface, �

obs

. For now, we will
assume that the aerodynamic body can be represented by a distribution of sources, Q, in the domain, ⌦,
without detailing their formulation. In this manner, we can consider the general problem of controlling
wave behavior resulting from an arbitrary distribution of sources, which might have wider applicability to
problems in physics and engineering.

One approach for controlling noise is to minimize a measure of the total sound amplitude integrated over
the observer surface. A suitable cost function for this problem involving the time-averaged acoustic pressure,
or the acoustic density (for linear acoustics, p0 = c2⇢0), can be written as

I =
1

T

Z

t

f

t

o

Z

�
obs

p02 ds dt =
1

T

Z

t

f

t

o

Z

�
obs

(c2⇢0)2 ds dt. (28)
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�
obs

⌦

Q(~x, t)

~n�
obs

Figure 4. Schematic of the domain,

⌦, for the acoustic problem. We are

concerned with the noise generated by

an arbitrary distribution of sources, Q,

observed at a surface, �
obs

.

Other cost functions are possible, such as matching a specified target
acoustic signature in time on �

obs

. For instance, this target signa-
ture might call for a reduction in the total strength of the noise,
or perhaps an adjustment in the frequency content. Controlling the
noise requires knowledge of the system, and in our problem, the
generation and propagation of aerodynamically generated sound is
governed by an inhomogeneous wave equation (FW-H equation):

N (⇢0) =
@2⇢0

@t2
� c2r2⇢0 �Q = 0 in ⌦, t

o

 t  t
f

, (29)

where Q is the distribution of sources. The sources will act as the
input for controlling the noise at the observer surface. In words, we
seek to minimize the total noise at �

obs

through changes in the source
terms, Q, that generate the sound which is propagated through the
domain by the wave equation. Mathematically, the PDE-constrained
optimization problem can be formulated as follows:

Minimize I = 1
T

R

t

f

t

o

R

�
obs

(c2⇢0)2 ds dt

such that N (⇢0) = 0
(30)

Again following the adjoint approach to optimal design, Eqn. 30
can be transformed into an unconstrained optimization problem by taking the inner product of an adjoint
variable, �, and the governing equation, N (⇢0), to form the Lagrangian:

I =
1

T

Z

t

f

t

o

Z

�
obs

(c2⇢0)2 ds dt +
1

T

Z

t

f

t

o

Z

⌦
� N (⇢0) d⌦ dt. (31)

The gradient information needed for minimizing I can be obtained by taking its first variation with respect
to perturbations in the source term,

�I =
1

T

Z

t

f

t

o

Z

�
obs

2c2⇢0�⇢0 ds dt +
1

T

Z

t

f

t

o

Z

⌦
� �N (⇢0) d⌦ dt

=
1

T

Z

t

f

t

o

Z

�
obs

2c2⇢0�⇢0 ds dt +
1

T

Z

t

f

t

o

Z

⌦
�



@2

@t2
(�⇢0) � c2r2(�⇢0) � �Q

�

d⌦ dt.

=
1

T

Z

t

f

t

o

Z

�
obs

2c2⇢0�⇢0 ds dt +
1

T

Z

t

f

t

o

Z

⌦
�
@2

@t2
(�⇢0) d⌦ dt � c2

T

Z

t

f

t

o

Z

⌦
�r2(�⇢0) d⌦ dt � 1

T

Z

t

f

t

o

Z

⌦
� �Q d⌦ dt.

(32)

After changing the order of integration, integrating the second term on the right hand side of Eqn. 32 by
parts gives

Z

⌦

Z

t

f

t

o

�
@2

@t2
(�⇢0) dt d⌦ =

Z

⌦



�
@

@t
(�⇢0)

�

t

f

t

o

d⌦�
Z

⌦

Z

t

f

t

o

@�

@t

@

@t
(�⇢0) dt d⌦, (33)

and again integrating the final term of Eqn. 33 by parts results in

Z

⌦

Z

t

f

t

o

�
@2

@t2
(�⇢0) dt d⌦ =

Z

⌦



�
@

@t
(�⇢0)

�

t

f

t

o

d⌦�
Z

⌦



@�

@t
�⇢0
�

t

f

t

o

d⌦+

Z

t

f

t

o

Z

⌦

@2�

@t2
�⇢0 d⌦ dt, (34)

where the order of integration in the final term has been reversed again. Consider now the third term on
the right hand side of Eqn. 32. Integrating by parts and using the divergence theorem (assuming a smooth
solution) yields

Z

t

f

t

o

Z

⌦
�r2(�⇢0) d⌦ dt =

Z

t

f

t

o

Z

�
obs

�r(�⇢0) · ~n�
obs

ds dt �
Z

t

f

t

o

Z

⌦
r(�) ·r(�⇢0) d⌦ dt, (35)
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and integrating the final term of Eqn. 35 by parts and using the divergence theorem a second time results in

Z

t

f

t

o

Z

⌦
�r2(�⇢0) d⌦ dt =

Z

t

f

t

o

Z

�
obs

�r(�⇢0) · ~n�
obs

ds dt �
Z

t

f

t

o

Z

�
obs

r(�) · ~n�
obs

�⇢0 ds dt +

Z

t

f

t

o

Z

⌦
r2� �⇢0 d⌦ dt.

(36)

The first term on the right hand side of Eqn. 36 can be eliminated by adding and subtracting again the
second term, or

Z

t

f

t

o

Z

⌦
�r2(�⇢0) d⌦ dt

=

Z

t

f

t

o

Z

�
obs

[�r(�⇢0) + r(�)�⇢0] · ~n�
obs

ds dt � 2

Z

t

f

t

o

Z

�
obs

r(�) · ~n�
obs

�⇢0 ds dt +

Z

t

f

t

o

Z

⌦
r2� �⇢0 d⌦ dt

=

Z

t

f

t

o

Z

�
obs

r(� �⇢0) · ~n�
obs

ds dt � 2

Z

t

f

t

o

Z

�
obs

r(�) · ~n�
obs

�⇢0 ds dt +

Z

t

f

t

o

Z

⌦
r2� �⇢0 d⌦ dt

= �2

Z

t

f

t

o

Z

�
obs

r(�) · ~n�
obs

�⇢0 ds dt +

Z

t

f

t

o

Z

⌦
r2� �⇢0 d⌦ dt, (37)

where, in going from the second to the third line, we have used the mathematical identity that a gradient
dotted with the normal and integrated over a closed surface is zero.

After substituting the results from Eqns. 34 & 37 into Eqn. 32 and rearranging terms based on integral
type, the variation of the cost function becomes

�I =
1

T

Z

t

f

t

o

Z

�
obs

⇥

2c2⇢0 + 2c2r(�) · ~n�
obs

⇤

�⇢0 ds dt +
1

T

Z

⌦



�
@

@t
(�⇢0)

�

t

f

t

o

d⌦� 1

T

Z

⌦



@�

@t
�⇢0
�

t

f

t

o

d⌦

+
1

T

Z

t

f

t

o

Z

⌦



@2�

@t2
� c2r2�

�

�⇢0 d⌦ dt � 1

T

Z

t

f

t

o

Z

⌦
� �Q d⌦ dt. (38)

Many of the terms in Eqn. 38 can be eliminated by satisfying the adjoint wave equation with the permissible
boundary and temporal conditions,

8

>

<

>

:

@

2
�

@t

2 � c2r2� = 0, in ⌦, t
o

 t  t
f

@
n

� = �⇢0, on �
obs

, t
o

 t  t
f

�(~x, t
o

) = 0, @�(~x,t

o

)
@t

= 0. in ⌦

(39)

Note that the wave equation is self-adjoint, meaning that the corresponding adjoint equation is again the
wave equation. As with the adjoint flow equations, if there is periodic behavior (the cost function does not
depend on t

f

), then the second and third integrals on the right hand side can be completely eliminated by

imposing �(~x, t
f

) = 0 and @�(~x,t

f

)
@t

= 0. The final result is a simple expression for the variation of the cost
function,

�I = � 1

T

Z

t

f

t

o

Z

⌦
� �Q d⌦ dt. (40)

While the result in Eqn. 40 is general, we will limit the design space to a particular form for the sources,
Q. More specifically, the sources will have the form of those appearing in the FW-H equation, or Q =
Q(U(~x, t))�(f).

IV. Coupling Strategy for the Aerodynamic and Aeroacoustic MDO Problem

We are interested in finding the sensitivity of the perceived noise at �
obs

due to shape changes on an
aerodynamic body of interest, S. Because the functional is defined away from the body surface in the CAA
domain, we will refer to these as remote sensitivities. CFD is performed in the region near the body, and
the CFD domain is overlapped with a larger acoustic domain that reaches some observer surface, �

obs

. A
schematic of this domain architecture is shown in Fig. 5. The link between the two problems occurs at the
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near-field interface, �
nf

, where the CFD solution is used as input for the CAA method in the form of source
terms for the wave equation. In terms of the coupled analysis problem, any perturbations to the shape of S
will cause variations that propagate through the CFD solution, are transferred to the wave solver through
the source terms at �

nf

, and ultimately propagate through the wave solution where they result in a change
in the total integrated noise at �

obs

.

S

�
obs

�
nf

�1

CFD

CAA

Figure 5. Notional schematic of the coupled

aerodynamic and aeroacoustic domains. The

CFD domain may overlap or be a subset of the

CAA domain. The resulting CFD flow state at

the near-field surface, �
nf

, becomes the input

for the wave equation source terms in the CAA

solver.

How then does a designer obtain sensitivities for a remote
objective with respect to surface shape changes in order to
improve a design, or in this case, to reduce the noise? Fol-
lowing the coupling strategy for finding remote sensitivities
by Alonso, et al. [10], the flow and acoustic adjoint formu-
lations can be linked at �

nf

by defining a new cost function
for the aerodynamic problem:

J = � 1

T

Z

t

f

t

o

Z

⌦
� Q d⌦ dt, (41)

such that the first variation is equivalent to that of the aeroa-
coustic adjoint formulation above for reducing noise, or

�J = � 1

T

Z

t

f

t

o

Z

⌦
�
@Q
@U

�U d⌦ dt. (42)

Recalling the Dirac delta functions that appear in Q for our
particular problem, only an integral over the near-field sur-
face will remain, or

�J = � 1

T

Z

t

f

t

o

Z

�
nf

�
@Q
@U

�U ds dt. (43)

By construction, we are solving the noise minimization prob-
lem from the aeroacoustic adjoint formulation expressed
within the aerodynamic domain. Again following the adjoint approach, Eqn. 43 can be augmented with
the variation of the flow equations as

�J = � 1

T

Z

t

f

t

o

Z

�
nf

�
@Q
@U

�U ds dt +
1

T

Z

t

f

t

o

Z

⌦
 T �R(U) d⌦ dt, (44)

and following the same procedure for arriving at Eqn. 21 gives

�J = � 1

T

Z

t

f

t

o

Z

�
nf

�
@Q
@U

�U ds dt +
1

T

Z

t

f

t

o

Z

S

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n
S

�Uds dt

+
1

T

Z

t

f

t

o

Z

�
nf

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n�
nf

�Uds dt � 1

T

Z

t

f

t

o

Z

⌦



@ T

@t
+ r T ·

⇣

~A � ¯̄I~u
b

⌘

�

�Ud⌦ dt. (45)

Certain integrals can again be eliminated to find an expression for the surface sensitivity, @J

@S

, involving only
the adjoint variables and other known quantities, and in particular, a new boundary condition for the flow
adjoint problem has emerged at the near-field surface. This admissible boundary condition for removing any
contributions involving integrals on �

nf

(first and third terms of Eqn. 45) can be expressed as

 T

⇣

~A � ¯̄I~u
b

⌘

· ~n�
nf

= �
@Q
@U

on �
nf

, t
o

 t  t
f

. (46)

Eqn. 46 requires the solution of a small system of equations at each node on �
nf

with every physical time
step, and clearly it is also a requirement that this system be solvable. The new condition relates the two
adjoint formulations through the same source terms that couple the direct analysis problem. However, now
it is their Jacobian in conservative variables, @Q

@U

, that provides the coupling mechanism.
Again, the expression chosen for �J is equivalent to the variation of the aeroacoustic cost function above,

�I, so the new boundary condition represents the coupling of the two adjoint problems. The acoustic adjoint
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solution, �, will now be required on �
nf

at each time instance when solving the flow adjoint, and this is a
reversal of the one-way coupling from the analysis problem. Another key di↵erence between the flow adjoint
derivation above and the coupled formulation described here is that there is no longer a dependence on the
force projection vector, ~d. This is due to the choice of functional, as we are no longer specifically interested
in the pressure on S when controlling noise. Instead, ~d = ~0, and the flow adjoint problem becomes,

8

<

:

@ 
@t

+
⇣

~A � ¯̄I~u
b

⌘

T

·r = 0, in ⌦, t
o

 t  t
f

~n
S

· ~' = � 
⇢E

(~v · ~n
S

), on S, t
o

 t  t
f

(47)

resulting in the following expression for the surface sensitivity to noise at a remote observer location:

�J =
1

T

Z

t

f

t

o

Z

S

[(r · ~v)#+ (~v � ~u
b

) ·r(#)] �S ds dt =
1

T

Z

t

f

t

o

Z

S

@J
@S

�S ds dt. (48)

V. Numerical Implementation

A. Numerical discretization of the compressible Euler equations

Solution procedures for both the compressible Euler equations and the corresponding adjoint equations were
implemented within the SU2 software suite (Stanford University Unstructured). This collection of C++
codes is built specifically for PDE analysis and PDE-constrained optimization on unstructured meshes,
and it is particularly well-suited for aerodynamic shape design. Modules for performing direct and adjoint
flow solutions, acquiring gradient information by projecting surface sensitivities into the design space, and
deforming meshes are included in the suite, amongst others. Scripts written in the Python programming
language are also used to automate execution of the SU2 suite components, especially for performing shape
optimization.

Both the direct and adjoint flow problems are solved using a Finite Volume Method (FVM) formulation
with an edge-based structure. The code is fully parallel and takes advantage of an agglomeration multigrid
approach for convergence acceleration. The unsteady Euler equations are spatially discretized using a central
scheme with JST-type artificial dissipation [11], and the adjoint equations use a slightly modified JST scheme.
Time integration is handled by a second-order accurate dual-time stepping approach for both the analysis
and adjoint problems [12]. Note that solving the adjoint equations requires integration in reverse time. This
is accomplished by storing the solution data at time steps during the analysis problem and then retrieving
the data in reverse order while time-marching the adjoint equations.

B. Numerical discretization of the wave equation

In this section a basic introduction to the Finite Element Method (FEM) technique is presented which has
also been implemented within the SU2 software suite. The final objective is the numerical discretization of
the wave equation with a source term Q = Q(~x, t).

@2V

@t2
� c2r2V = Q, in ⌦, t > 0 (49)

using Dirichlet and Neumann boundary conditions.
Finite-element methods of solution are based upon approximations to a variational formulation of the

problem. A variational formulation requires the introduction of a space of trial functions, T = {V (t, ~x)},
and a space of weighting functions W = {W (t, ~x)}. The problem consists in finding V (t, ~x) in T , satisfying
the problem boundary conditions, such that

Z

⌦
WT

✓

@2V

@t2
� c2r2V �Q

◆

d⌦ = 0 (50)

To produce an approximate solution to the variational problem, a grid of finite elements is constructed
on the domain ⌦. It will be assumed that the discretization employs p nodes. Finite-dimensional subspaces
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T (p) and W(p) of the trial and weighting function spaces, respectively, are defined by

T (p) =

(

V (p)(t, ~x) |V (p) =
p

X

J=1

V
J

(t)N
J

(~x)

)

, (51)

W(p) =

(

W (p)(t, ~x) |W (p) =
p

X

J=1

a
J

(t)N
J

(~x)

)

, (52)

where V
J

(t) is the value of V (p) at node J and time t. On the other hand, a1, a2, . . . , ap

are constant,
and N

J

(~x) is the piecewise linear trial function associated with node J . We now apply the finite element
approximation by discretizing the domain of the problem into elements and introducing functions which
interpolate the solution over nodes that compose the elements. The Galerkin approximation is determined
by applying the variational formulation of Eqn. 50 in the following form: find V (p) in T (p), satisfying the
problem boundary conditions, such that

Z

⌦
NT

I

✓

@2V

@t2
� c2r2V

◆

d⌦ =

Z

⌦
NT

I

Q d⌦, (53)

for I = 1, 2, ..., p. The form assumed for V (p) in Eqn. 51 can now be inserted into the left hand side of
Eqn. 53 and the result can be written as

Z

⌦
NT

I

 

p

X

J=1

@2V
J

@t2
N

J

� c2
p

X

J=1

V
J

r2N
J

!

d⌦ =

Z

⌦
NT

I

Q d⌦. (54)

Rearranging terms we obtain

p

X

J=1

@2V
J

@t2

✓

Z

⌦
NT

I

N
J

d⌦

◆

�
p

X

J=1

c2V
J

✓

Z

⌦
NT

I

r2N
J

d⌦

◆

=

Z

⌦
NT

I

Q d⌦, (55)

and applying the divergence theorem gives

p

X

J=1

@2V
J

@t2

✓

Z

⌦
NT

I

N
J

d⌦

◆

�
p

X

J=1

c2V
J

✓

Z

�
NT

I

(rN
J

· ~⌫) d��
Z

⌦
rNT

I

·rN
J

d⌦

◆

=

Z

⌦
NT

I

Q d⌦, (56)

where the boundary integral disappears unless we are computing a boundary element with non-homogeneous
Neumann conditions (I is an exterior node). The result at a typical interior node I is

X

E2I

X

J2E

@2V
J

@t2

✓

Z

⌦
E

NT

I

N
J

d⌦

◆

+
X

E2I

X

J2E

c2V
J

✓

Z

⌦
E

rNT

I

·rN
J

d⌦

◆

=
X

E2I

X

J2E

Q
J

✓

Z

⌦
E

NT

I

N
J

d⌦

◆

,

(57)
where the first summation extends over the elements E in the numerical grid which contain node I and the
second summation extends over nodes J of the elements E. ⌦

E

is the portion of ⌦ which is represented
by element E. Note that the field variables Q are interpolated from the nodal variables by using the shape
functions.

Finally, the time discretization is performed using a second order formula,

@2W

@t2
=

2un+1 � 5un�1 + 4un�1 � un�2

�t2
, (58)

or by splitting the original equation into two partial di↵erential equations where only a first order time
derivative appears:

@W

@t
= AW + g where, W =

"

V

U

#

, A =

"

0 I

c2r2 0

#

, g =

"

0

Q

#

. (59)

Due to the self-adjoint nature of the wave equation, the same numerical solver can be used for both the
analysis and adjoint wave problems. Again, however, the adjoint problem requires integration in reverse
time.
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C. Design Variable Definition and Mesh Deformation

The above coupled-adjoint methodology o↵ers a way to compute the variation of an objective function with
respect to infinitesimal shape deformations in the direction of the local normal at points on the design
surface. While it is possible to use each surface node in the computational mesh as a design variable capable
of deformation, this approach is not often pursued. A more practical choice involves computing the surface
sensitivities at each mesh node on the design surface and then projecting this information into a design space
made up of a smaller set of design variables (possibly a complete basis). The procedure for computing the
surface sensitivities can be used repeatedly in a gradient-based optimization framework in order to march
the surface shape toward an optimum through gradient projection and mesh deformation.

In the two-dimensional airfoil calculations that follow, Hicks-Henne bump functions were employed [13]
which can be added to the original airfoil geometry to modify the shape. The Hicks-Henne function with
maximum at point x

n

is given by

f
n

(x) = sin3(⇡xe

n), e
n

=
log(0.5)

log(x
n

)
, x 2 [0, 1], (60)

so that the total deformation of the surface can be computed as �y =
P

N

n=1 �nf
n

(x), with N being the
number of bump functions and �

n

the design variable step. These functions are applied separately to the
upper and lower surfaces. After applying the bump functions to recover a new surface shape with each design
cycle, a spring analogy method is used to deform the volume mesh around the airfoil [14].

(a) Comparison of lift coe�cient versus angle of attack in de-
grees between SU2 and experiment.

(b) Comparison of gradients obtained via the time-accurate
continuous adjoint and finite di↵erencing for 38 Hicks-Henne
bump functions.

Figure 6. Numerical results for a pitching NACA 64A010 in transonic flow.

VI. Numerical Results

A. Verification and Validation of the Unsteady Flow and Adjoint Equations

For validating our implementation of the unsteady Euler equations in ALE form, a comparison was made
against the well-known CT6 data set of Davis [15]. The physical experiment measured the unsteady perfor-
mance for the NACA 64A010 airfoil pitching about the quarter-chord point. The particular experimental
case of interest studied pitching motion with a reduced frequency, w

r

, of 0.202 (!
r

= !·chord

2v1
, where ! is the

angular frequency of the pitching), M1 = 0.796, a mean angle of attack of 0 degrees, and a maximum pitch
angle of 1.01 degrees. The numerical simulation was performed with 25 times steps per period for a total of
10 periods on a structured O-mesh (160 x 32 nodes) with 160 nodes along the airfoil surface. Fig. 6 shows a
comparison of the lift coe�cient versus angle of attack between SU2 and experiment during the final period
of oscillation. In physical time, the curve is traversed in a counterclockwise fashion. Note that non-linear
behavior corresponding to moving shock waves results in a hysteresis e↵ect. The numerical results agree well
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with experimentally measured values and also compare favorably with other inviscid results.
In order to verify the accuracy of the gradient information obtained via the time-accurate flow adjoint, 38

Hicks-Henne bump functions were chosen as design variables along the upper and lower surfaces of the NACA
64A010. After solving the adjoint equations using the stored solution data from the numerical experiment
performed above, a comparison was made between the gradients of the time-averaged C

d

with respect to
the design variables calculated using the continuous adjoint and a finite di↵erencing approach with small
step sizes for the bump deformations. The gradients compare favorably, although there are slight di↵erences
between the adjoint and finite di↵erencing results, as seen in Fig. 6. These small di↵erences are typical for
this type of comparison, and it is expected that as the mesh is further refined, the gradients will collapse
onto one another.

-5 0 5

-5

0

5

(a) View of the airfoil (center), near-field, and observer sur-
faces. The x and y coordinates are non-dimensionalized by the
airfoil chord length, which is here denoted as c.

(b) Zoom view of the CFD mesh near the airfoil.

Figure 7. Views of the two mesh system for the CFD and CAA problems.

B. Demonstration of Remote Sensitivities for Noise Control

While the previous results made use of CFD alone, for demonstrating the coupled-adjoint methodology,
a single shape design cycle was performed for minimizing the observed noise of the NACA 64A010 airfoil
pitching in still air. Two overlapping grids were created for the CFD and CAA problems, as shown in Fig. 7.
The coupling between the CFD and CAA occurred at the near-field, �

nf

, and the noise was observed in
the CAA solver at �

obs

. A true far-field boundary, �1, was placed many body-lengths away such that no
reflections were observed in either solver. The meshes are identical external to �

nf

.
The numerical experiment entailed sending a single pulse into the domain using a nose-down pitching

motion, and the noise was computed as the square of the acoustic pressure at �
nf

due to the pulse. Examples
of the coupled analysis are shown in Fig. 8 for two di↵erent time steps. With each physical time step in
the dual-time stepping solvers, the CFD and CAA solutions are tightly coupled at the interface through the
FW-H source terms, and this coupling is evident in the close alignment of the density contours across the
two domains, as seen in Fig. 8.

Using the stored solution data from the coupled analysis problem, the coupled-adjoint solution was
computed. During the coupled-adjoint simulation, disturbances propagate inwards toward the center of
the domain starting from �

nf

. These disturbances move through the adjoint CAA domain until they are
transferred to the adjoint CFD domain via the new coupling boundary condition and eventually reach the
airfoil surface where the surface sensitivity is computed at each time step. In order to calculate the gradient,
the time-averaged surface sensitivities to the noise were then projected into a design space composed of the
same 38 Hicks-Henne bump functions used above. After a single step in the gradient direction provided
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(a) Density contours in the CFD (color) and CAA (grey) so-
lutions at t = 0.1649 in a nose-down pitching position.

(b) Density contours in the CFD (color) and CAA (grey) so-
lutions at t = 0.2662 in a nose-up pitching position.

Figure 8. Example solutions in both the CFD and CAA solvers during the coupled analysis problem.

a new set of design variable values for the bumps, the mesh was deformed, and a new coupled analysis
was performed. A comparison of the baseline and deformed airfoil shapes, as well as the resulting noise
signatures versus time for the pulse, are presented in Fig. 9. The coupled-adjoint method successfully
provided a gradient that reduces the observed total noise by 1.87% after a single design cycle, mostly due
to a thinning of the airfoil profile. This agrees with intuition, as a thinner airfoil should displace a smaller
volume of fluid and thus produce less thickness noise.

VII. Conclusions

The simple demonstration of the coupled-adjoint for a pitching airfoil is just a starting point for our in-
vestigation into the control of noise. This article has presented a methodology for addressing aerodynamics
and aeroacoustics via separate numerical methods coupled within a single design framework. Time-accurate
continuous adjoint formulations have been developed for both aerodynamics and aeroacoustics, and further-
more, these formulations have been coupled through a new type of boundary condition to o↵er a designer
remote sensitivity information. This results in an e�cient, adjoint-based methodology for multiphysics de-
sign problems. The method was applied to aeroacoustic shape design where the noise of a pitching airfoil
observed at an o↵-body location was successfully reduced using gradient information obtained using the
coupled-adjoint.

Future work will aim to extend several aspects of the present coupled-adjoint methodology. Boundary
integral methods will be considered for solving the CAA analysis and adjoint problems. Other aeroacoustic
objective functions will also be investigated, such as the inverse design of acoustic signatures or controlling
the directionality of noise through tailoring the shape and location of �

obs

, which could have many interesting
applications for aerospace systems. Adding more geometric complexity, fidelity, or physics should not change
the methodology. For instance, a designer could easily include more physics by choosing the Reynolds-
averaged Navier-Stokes (RANS) equations in the CFD domain while leaving the overall coupled design
framework unchanged. Furthermore, the method has been developed in a general manner such that it could
be applied to other multiphysics problems where adjoint sensitivities are desired for use in optimal shape
design, error estimation, or goal-oriented mesh adaptation, for example.
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(a) Airfoil profile comparison after one design cycle using the
gradient from the coupled-adjoint to deform the Hicks-Henne
bumps along the surface. Airfoil chord again denoted by c.

(b) Comparison of the acoustic pressure over time for the base-
line airfoil and the new shape after one design cycle. The
time-average of the total noise over the interval was reduced
by 1.87%.

Figure 9. Numerical results after one design cycle using the coupled-adjoint methodology.
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