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An Adjoint-Based Aerodynamic Shape Optimization 
Methodology for Fairing Systems 

M. R. Colonno1, F. Palacios1, T. Economon2, A. K. Lonkar2, and J. J. Alonso3 
Stanford University, Dept. of Aeronautics & Astronautics, Stanford, CA, 94305   

The optimization of a fairing system is formulated in terms of the overall performance of 
the launch vehicle-fairing system as measured by the total velocity increment within a 
maximum load constraint at the fairing-vehicle interface. This objective requires a time-
accurate treatment of the vehicle’s aerodynamics and, when adjoint sensitivities are used for 
gradient information, a time-accurate adjoint functional as well. The fairing’s geometry is 
parameterized in terms of a local spherical coordinate system which can be perturbed via 
the manipulation of spline control points or Hicks-Henne bump functions. The local surface 
perturbation and the continuous adjoint capabilities of the SU2 design suite allow for 
accurate sensitivities of the aerodynamic performance to the geometric parameters for use 
with gradient-based optimization algorithms. A sample medium-lift launch vehicle is used as 
an example to demonstrate the method and results of the optimization presented in addition 
to possibilities to improve the method.  

Nomenclature 
A   =   area 
A   =   matrix of linear constraints 
A    =   inviscid flux Jacobian matrices 

b   =   vector of linear constraint values 
c   =   vector of nonlinear constraint 
CA    =   aerodynamic axial force coefficient 
CM   =   aerodynamic moment coefficient 
CN    =   aerodynamic normal force coefficient 
D   = drag force 
d   =   composite core thickness or beam cross-section measure 
d    =   force projection vector 
E   = total energy per unit mass 
Fale   =   convective fluxes in arbitrary Langrangian-Eulerian form 
FA    =   axial force 
FN    =   normal force 
g0    =   standard Earth gravity 
H   = stagnation enthalpy 
Isp    =   specific impulse 
i,j    =   indices 
J    =   objective function 
jS   = scalar function defined on surface S 
L    =   length 
m    =   mass 
n    =   unit normal vector 
p   =   static pressure 
q    =   dynamic pressure 
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R    =   radius 
R(U)   = system of governing flow equations 
S    = solid wall boundary (design surface) or reference area 
t0   = initial time 
tf   = final time 
U    = vector of conservative variables 
uΩ    =   control volume boundary velocity 
V∞   = free stream velocity 
v  =   flow velocity vector in inertial frame 
x    =   axial direction  
x   = vector of design variables 
α = angle of attack 
β = side-slip angle 
ρ = density 
ρ∞ = free-stream density 
ϕ  =   flow adjoint velocity vector 
Γ = domain boundary 
ψ = vector of flow adjoint variables 
Ω = problem domain 
σ  =    stress 
γ = ratio of specific heats 
∇(⋅) = gradient operator 
∇⋅ (⋅) = divergence operator 
∂n(⋅) = surface-normal gradient operator, ( )Sn ⋅∇ ⋅  
⋅ = vector inner product 
x = vector cross product 
⊗ = vector outer product 
δ(⋅) = first variation  
 
 
Subscripts 
 
A   =    axial direction 
bt   =    boat tail section property 
cyl   =    cylindrical section property 
E   =    Earth 
f   =    fairing property 
fd   =    at fairing deployment 
M    =    moment 
N    =    normal direction (to axis) 
P    =    propellant 
PL   =    payload 
S    =    structural 
v   =    vehicle 
∞   =    ambient or free stream 
0   =    initial 
 
Superscripts 
 
1,2,…,n  =  launch vehicle stage 
*   =  optimal 
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I. Introduction 
PTIMUM profiles for launch vehicle and missile fairings have been sought since the early days of rocket flight, 
focusing primarily on the minimization of aerodynamic drag and, in some cases, aerodynamic heating. 

Ultimately, the performance measure of interest is the flight performance of the vehicle as a whole which includes 
consideration of disciplines beyond aerodynamics. In order to fully capture the performance impact of the fairing 
design, a multidisciplinary optimization (MDO) is required which captures the interactions of structural loading, 
aerodynamic stability, and trajectory performance must be included in an integrated fashion. MDO efforts of rocket 
systems to date have focused primarily on system-level parameters3,4,5 (e.g. staging ratio) rather than directly 
optimizing the physical variables of the vehicle (e.g. length, radius, skin thickness, etc.) while MDO efforts on other 
aerospace applications6,11,12,19,21 have focused on high-fidelity implementation. Some previous work has been done in 
the area of high-fidelity rocket and fairing optimization7 in addition to some recent work surrounding the 
aerodynamic shape optimization of asymmetric fairings for large and unconventional payload geometries1.  
 In order to isolate the aerodynamic shape optimization problem from the full MDO one without omitting 
important performance trades, constraints were used to bound the aerodynamic loading applied to the rest of the 
vehicle. This essentially decoupled the launch vehicle and fairing design by reducing the size of the design space 
available to a full-vehicle MDO. Within the aerodynamic shape optimization sub-problem of a fairing, three key 
challenges exist that are not typically encountered in most aerodynamic shape optimizations: 1) the ambient 
conditions are changing rapidly during either ascent or reentry requiring a time-accurate treatment of performance 
and sensitivities, 2) the fairing’s aerodynamic properties have a considerable impact on the loading sustained by the 
rest of the vehicle which is not directly modeled, and 3) the very broad range of flow regimes encountered. In order 
to address these challenges in a consistent way for shape optimization, a time-accurate, continuous surface adjoint 
formulation was used via the SU2 suite of aerodynamic design tools20,22. The cumulative aerodynamic performance 
of fairing system over the relevant portion of a trajectory to atmospheric flight loads was determined, constrained by 
one-dimensional-equivalent structural limits of the vehicle.   

II. Optimization Problem Formulation   
In this section the overall performance of the launch vehicle and structural constraints are developed. Launch 

vehicle optimization is inherently multidisciplinary in nature and some simplifications are made to expose the most 
important effects of the fairing’s aerodynamic performance, mass properties, and structural loading. The general 
optimization problem statement is  
 

 

Minimize:    ( )J x , 
 

Subject to:    ( ) 0≤
≤

c x
Ax b

, 
(1)

 
where c(x) denotes any nonlinear constraints and A denotes a matrix of linear constraint coefficients with 
corresponding values b. In the sections below two different objective functions are developed and the nonlinear 
constraint discussed. The subsequent section discusses the parameterization of the system’s geometry and the 
associated linear constraints. Later sections discuss the sensitivities of J and c based on a continuous adjoint 
formulation and detail the optimization procedure itself.  

A. Performance  
Consider the general multi-stage rocket equation, Eq. (2), with the final stage performance separated from the 

summation.  This famous equation elegantly reveals the system-level parameters key to the performance of any 
rocket vehicle: 1) propulsion efficiency (Isp, measured in seconds in the formulation below), 2) the mass ratios (full 
mass to empty) of the stages, 3) the number of stages (n), and 4) the trajectory’s losses (ΔVlosses) or the deviation 
from the ideal performance. The loss terms include the velocity increment lost to aerodynamic drag, Eq. (3), and the 
velocity increment lost to finite-time flight in a gravitational field (ΔVg). The fairing mass, in essentially all practical 
systems, is a small fraction of the final stage’s initial mass and a very small fraction of the vehicle’s initial mass.  
Equation 2, in the form shown below, implicitly assumes that the fairing is deployed sometime during the final stage 
flight, separating it into two sub-stages at a specific propellant mass (subscript fd).  Evaluating this expression with 
values of practical systems shows that even for mf → 0 the total performance gain expressed in terms of ΔVtot is 
small. This, however, must be considered in the context of the launch vehicle performance as a whole. For any 
chemically-powered launch vehicle system, the payload mass fraction (fraction of the liftoff mass that corresponds 
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to the payload) is very small. Hence, small savings in either mf or ΔVlosses from an optimized fairing are critical due 
to the high sensitivity of the relevant performance metric, not to mention the cost of access to space. 

 

 

1
0

0 0
1 0

( )
ln ln ln

( )

n n n nin
S P PL f S P fd PLi n

tot sp sp lossesi i n n n
i P S P fd PL f S PL

m m m m m m mmV I g I g V
m m m m m m m m

−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + + +⎛ ⎞
Δ = + + − Δ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + + + +⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

∑  

0 ( )
n

i j j
S P PL f

j i
m m m m m

=

= + + +∑  
(2) 

  

 
0

( ) ( )
( )

ft
D

losses g D g
vt

q t C tV V V V S dt
m t

∞Δ = Δ + Δ = Δ + ∫ (3) 

  
 In this study we seek to minimize not the drag force itself nor even the drag force at a finite set of discrete 
conditions but the functional formed by Eq. (2): an integration of the drag force, the changing ambient conditions, 
and the changing vehicle mass. This requires a method by which sensitivities can be obtained to functionals varying 
in time and the continuous adjoint approach used presently is summarized in a subsequent section. In order to isolate 
the fairing’s effects and limit the scope of the problem the vehicle’s trajectory was assumed to fixed. While 
aerodynamic loading can have an impact on the trajectory close to the maximum q∞ point, its overall impact is 
minimal and was neglected. This assumption represents a significant simplification but removed the need to 
recompute the trajectory for each design – a major corresponding reduction in computational cost.  
 The total velocity increment for a typical low-Earth-orbit mission is ~ 9 km/s. When establishing an objective 
function for numerical evaluation it is preferable to scale both the objective and variables to ~O(1). Hence, the 
objective used here divides the total velocity increment by an orbital velocity scale for Earth, 
  

 /
tot

E E

VJ
Gm R
Δ

≡ − . (4) 

 
The negative sign corresponds to minimization consistent with the canonical optimization problem formulation. It 
must also be noted that the vehicle’s drag is only partially accounted for by the fairing. Here we assume that the 
contribution to the drag of the rest of the vehicle, integrated over the trajectory, is a constant which is independent of 
the fairing’s geometry. Hence, ΔVD can be expressed as the sum of the fairing’s drag and that of the rest of the 
vehicle. The constant terms merely shift the objective value and do not play a role in optimization.  
 Finally, sensitivities of the objective function are required. The sensitivity of the ΔVD functional of Eq. (3) is 
evaluated directly by SU2, discussed in detail in a subsequent section. The remaining terms of Eq. (2) rely upon the 
mass of the fairing and can hence be expressed as the sensitivity of mf to the design variables. This is discussed in 
the mass properties section below.   

B. Aerodynamics  
 Most generally, the aerodynamics of a launch vehicle at a given instant in an ascent trajectory are a function of 
the current altitude (atmospheric conditions) and velocity in addition to the vehicle’s orientation. The latter requires 
a six-degree-of freedom dynamic analysis involving the instantaneous wind conditions, the vehicle’s structural 
dynamics, and its control system – all of which are beyond the scope of this work. A simplification frequently 
employed to decouple this tightly-interdisciplinary problem (and provide weather limits for launch) is to rate the 
vehicle to a maximum q∞α, or product of dynamic pressure and angle of attack, essentially linearizing the 
aerodynamics and structural dynamics of the vehicle for small α.  
 Consistent with the assumption that q∞(t) is fixed, maximum q∞(t)α(t) is fixed if a value of α at maximum q∞ is 
assumed. This adds an additional scalar input to the optimization which defines the maximum aerodynamic loading 
but does not change the optimization procedure itself. The nominal trajectory, from a performance standpoint, 
neglects winds and dynamics or, equivalently, assumes α = 0 throughout. In order to save the computational expense 
of evaluating the aerodynamics at both α = 0 (for nominal performance) and α = αmax (for loads), the lateral and 
axial force coefficients are assumed to be proportional to sin(α) and cos(α), respectively, for small α. Hence, CA and 
CM are evaluated at α = αmax only and the nominal (α = 0) value of CA for drag loss is given by 
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 ( ) (0)cos( ) cos( )A A DC C Cα α α= = . (5) 
  
 Finally, the drag loss due to the fairing is given by 
 

 
0

( ) ( ; 0) 
( )

f

f f

t

D A
vt

q tV S C t dt
m t

α∞Δ = =∫ . (6) 

 

C. Structural Load Constraint  
 Since the fairing, for the purposes of this problem, was designed independent of the launch vehicle on which it 
would fly, limiting loads at the vehicle-fairing interface must be established a priori. The total load applied to the 
vehicle was reduced to an equivalent axial force and bending moment at the interface. These include both the 
contribution of aerodynamic forces and the inertial forces for a given load case defined by an axial acceleration, ax, 
dynamic pressure (q∞), and angle of attack (α). Assuming a thin-walled primary structure, only the axial stress state 
was considered (shear is neglected). The maximum of these total interface forces must be constrained to ensure the 
vehicle is not overloaded. Employing a one-dimensional structural model for the vehicle, these were combined to 
form an equivalent static line load at the vehicle-fairing interface, defined in Eq. (9) and simplified through 
judicious choices of the normalizing area (S) and length (L) for aerodynamic coefficients, Eqs. (7). A representative 
structural cross-sectional area (Av) and second moment of area (Iv) for the vehicle primary structure are required 
parameters.  Here, a thin-walled, circular cross-section was assumed for the vehicle and the second moment of area 
and cross-sectional area estimated via the thin-walled formulation, Eqs. (7). With this substitution, a characteristic 
wall thickness (dv) replaces the parameter Iv.  Finally, a reference stress for the vehicle primary structure material(s) 
(σref) is required for comparison to the line loads. In summary,  
 
 2

vS Rπ= , 3
v v vI R dπ≈ , 2v v vA R dπ≈ , (7) 

   
 A

A
FC

q S∞

≡ , M
v

MC
q SR∞

≡ , (8) 

   
 1 1

2 2f

A f x f xv v
load A M

ref v v ref v v v ref

F m a m aMR q RC C C
A I d R dσ σ π σ

∞
+⎛ ⎞ ⎛ ⎞≡ + = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. (9) 

  
 Lateral inertial loads, which are primarily a function of vehicle structural dynamics, have been neglected. In 
similar fashion to the drag losses above, Cload is taken to be the loads applied to the vehicle from the fairing’s 
aerodynamic loading only and not a representation of the total static or dynamic loading on the vehicle (which is 
considerably more complex). Returning to the context of the optimization problem, Cload must be ≤ its maximum 
allowable value for the vehicle, an additional scalar parameter, acting as a nonlinear constraint.   

D. Mass Properties  
 The final aspect of Eq. (2) requiring consideration is the mass of the fairing. Without a detailed structural design 
the internal structure of the must remain constant with respect to changes in the design variables (though it can be an 
a priori function of position) and the mass of the fairing is simply a function of the fairing’s surface area – a major 
simplification. This essentially requires the fairing’s internal structure to be overdesigned and neglects any 
additional gains in performance possible through an aero-structural optimization. Here, the surface density 
distribution (mass per unit area) of the fairing’s skin is an input parameter. This density can include both structural 
and non-structural mass, averaged over the surface area.  
 With this distribution, the fairing’s mass can be evaluated by integrating over the surface area in a spherical 
coordinate system. If the faring’s surface is specified as r(θ,φ) its mass is given by 
 

 
2 /2

2

0 0

( , ) ( , ) sin( )f s fm r d d
π π

σ θ φ θ φ θ φ θ= ∫ ∫ , (10) 
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where θ is the polar angle from the nose and φ is the azimuth (see Fig. 2 and subsequent section for detailed 
discussion of geometry). For an axisymmetric fairing only the distribution in θ is required, 
 

 
/2

2

0

2 ( ) ( ) sin( )f s fm r d
π

π σ θ θ θ θ= ∫ . (11) 

  
 If the geometry is parameterized in r(θ,φ) the sensitivities of mf to the design parameters can be evaluated 
directly from Eq. (10) or Eq. (11). While analytical sensitivities are possible for sufficiently simple r(θ,φ), a 
complex step method was used here for general application to any parameterization, yielding the sensitivities 
∂mf/∂xi. 

III. Geometry & Grid Deformation 
 A nominal EELV-sized17,24 payload fairing (of similar shape and scale that of a ULA Delta II23) is shown in Fig. 
1. This fairing includes a flair-down or “boat tail” region aft of the payload compartment allowing for payload 
diameters which are greater than the vehicle’s diameter. The payload volume and dynamic envelope (RPL and Lcyl) 
were assumed fixed by satellite needs resulting in a volume constraint on the fairing’s shape.  The curved portion of 
the fairing is typically a spline or otherwise-parameterized curve tangent at either end to the cylindrical section of 
the fairing and a normal to the axis of rotation at the nose.  

 
   Figure 1. Cross-sectional view of nominal fairing design.  Dotted line shows payload volume envelope. 
 
 An axisymmetric geometry is shown in Fig. 1 and is used as the sample case in this study, though the 
optimization method applies to any general geometry of the form r(θ,φ). Due to the payload constraints mentioned 
above, only the forward region is parameterized and considered for optimization. Any parameterization that can 
produce the profile of the fairing, r(θ,φ) or r(θ) for axisymmetric geometries, can be accommodated within the 
current framework. Here, two approaches were considered: 1) A cubic spline interpolant of m control points {θi, ri} 
(tensor product spline surface with control points {θi, φi, ri} for general surfaces) and dr /dθ = 0 boundaries to 
provide the proper tangency. 2) A set of Hicks-Henne bump functions at m control points {θi, Δri} which are added 
to the baseline surface. The general parameterization of the geometry is depicted in Fig 2. 
 
 

RPL 
R 

Lfor Lcyl 

Lbt 

Rv 
Payload Volume 
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Figure 2. General parameterization of the fairing nose geometry and control points. 
 
 In order to allow movement of the nose point when using Hicks-Henne functions14,25, a modification is required 
at the nose. Defining the Hicks-Henne independent variable, u ∈ [0→1], as  
 

 ( ) 2u θθ
π

≡ , (12) 

 
the general Hicks-Henne function in this application takes the form 
  

 
10

10

( ) sin( ) ,

log (0.5)
.

log ( )

i
i

pn
i i

i
i

f r r u

n
u

π⎡ ⎤= Δ ⎣ ⎦

=
 (13) 

 
The amplitude (Δri), peak location (ui), and width (pi) are all design parameters. Hicks-Henne functions, by 
construction, go to zero at u = 0 and u = 1 and hence no function could be placed at the nose (u = 0). To circumvent 
this at the nose the definition is modified slightly to capture only half of the function (0.5 < u < 1.0): 
 

 
0.5,

( ) 0.5.

noseu

u θθ
π

=

= +
 (14) 

 
With the modification above the nose can be smoothly stretched independently. This new set of partially-modified 
Hicks-Henne functions provides a means to smoothly deform the baseline surface to an arbitrary level of detail.  
 With the outer surface of the fairing parameterized, care must be taken in the form of constraints to ensure valid 
geometries. Allowing geometries with inherently poor performance may impede converge of the optimization but 
will not result in errors. Here, we seek only to eliminate invalid geometries. First we seek to eliminate any surface 
that crosses the axis of rotation: 
 

 min[ ( , )] 0r θ φ > . (15) 
 
When using spline interpolation, enforcement of this constraint requires some detail. Even if all the control points 
are taken to have rj > 0 the interpolated values between them (especially for higher-order polynomials basis 
functions and a small number of control points) can still become negative. Hence, the minimum r must be found in 
each segment of the spline, resulting in a more complex statement of the constraint, 
 

θ 

φ 

r 

{θi,ri} 

{θi,φi,ri} 
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ρ is the fluid density, v = {u, v, w}T is the flow velocity, uΩ is the local velocity for a domain in motion, E is the 
total energy per unit mass, and p is the static pressure. (In the present application, uΩ is zero.) The second line of 
Eqs. (19) represents the flow tangency condition at a solid wall. The final line represents a characteristic-based 
boundary condition at the far-field where, in general, the fluid states at the boundaries are updated depending on the 
sign of the eigenvalues. The boundary conditions take into account any boundary velocity due to control volume 
motion. In order to close the system of equations after assuming a perfect gas, the pressure is determined from 

 

 
1( 1) ( ) ,
2

p E v vγ ρ ⎡ ⎤= − − ⋅⎢ ⎥⎣ ⎦
 (21) 

 
and the stagnation enthalpy is given by 

 

 .pH E
ρ

= +  (22) 

B. Surface Sensitivities via a Time-Accurate Continuous Adjoint Approach 
 The objective of this section is to describe the way in which we quantify the influence of geometric 

modifications on the pressure distribution at a solid surface in the flow domain. 
A typical shape optimization problem seeks the minimization of a certain cost function, J, with respect to 

changes in the shape of the boundary, S. Therefore, we will concentrate on functionals defined as time-varying 
quantities on the solid surface S,  
 

 ,
f

o

t

S
t S

J j dsdt= ∫ ∫  (23) 

 
where jS is a time-dependent scalar function defined at each point on S.  
 Therefore, the goal is to compute the variation, or change, of Eq. (23) caused by arbitrary but small (and 
multiple) deformations of S and to use this information to drive our geometric changes in order to find an optimal 
shape for the design surface, S. This leads directly to a gradient-based optimization framework. The shape 
deformations applied to S will be infinitesimal in nature and can be described mathematically by 
 
 { }' ( ) ( ), ,SS x S x n x x Sδ= + ∈  (24) 

 
where S has been deformed to a new surface S’ by applying an infinitesimal profile deformation, δS, in the local 
normal direction, Sn , at a point, x , on the surface, as shown above in Fig. 4.   

Surface shape deformations will result in variations of the pressure distribution along the surface, so we will 
focus on pressure-based functionals with the form 
 
 ( ).S Sj d pn= ⋅  (25) 
 

 The vector d  is the force projection vector, and it is an arbitrary, constant vector which can be chosen to 
relate the pressure, p, at the surface to a desired quantity of interest. For aerodynamic applications, example 
candidates are 
 

CD: ( )cos cos ,sin cos ,sin / ,d Cα β α β β ∞=  

(26) 
CL: ( )sin ,cos ,0 / ,d Cα α ∞= −  

CSF: ( )sin ,cos , sin sin ,cos / ,d Cβ α β α β ∞= − −  

CL/CD: 
1 sin cos cos , sin ,cos sin cos ,L L L

D D D D

C C Cd
C C C C C

α α β β α α β
∞

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠  
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where 2 / 2C V Aρ∞ ∞ ∞= , V∞ is the free stream velocity, ρ∞ is the free stream density, and A is a reference area.  
The minimization of Eqn. (19) can be considered a problem of optimal control whereby the behavior of the 

governing flow equation system is controlled by the surface shape with deformations of the surface acting as the 
control input. Furthermore, any variations of the flow variables due to surface deformations are constrained to 
satisfy the system of governing flow equations,  
 

 ( ) ( ) 0,ale
U UU F F U u
t t Ω

∂ ∂
= + ∇ ⋅ = + ∇ ⋅ −∇ ⋅ ⊗ =

∂ ∂
R   (27) 

 
where the terms involving the control volume motion have been separated from the traditional Euler fluxes. 
Mathematically, the constrained optimization problem can be formulated as follows: 
 

 
 

Minimize   
0

( )
ft

S
t S

J d pn dsdt= ⋅∫ ∫  

Such that   ( ) 0U =R  
                                   (28) 

 
Following the adjoint approach to optimal design, the constrained optimization problem in Eq. (28) can be 

transformed into an unconstrained optimization problem by adding the inner product of an unsteady adjoint variable 
vector, ψ, and the governing equations integrated over the domain (space and time) to form the Lagrangian: 
 

 
 

0 0

( ) ( ) ,
f ft t

T
S

t S t

J d pn dsdt U d dt
Ω

= ⋅ + Ψ Ω∫ ∫ ∫ ∫ R                                     (29) 

 
where we have introduced the adjoint variables, which operate as Lagrange multipliers and are defined as 
 

 
 

.
u

v

w E

E

ρ

ρ ρ

ρ

ρ ρ

ρ

ψ
ψ ψ
ψ ϕ
ψ ψ
ψ

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪Ψ = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

                                    (30) 

 
To find the gradient information needed to minimize the objective function, we take the first variation of Eq. (29) 
with respect to perturbations of the surface shape: 
 

 
 

0 0 0

( ) ( ) ( ) .
f f ft t t

T
S

t S t S t

J d p Sdsdt d n pdsdt U d dtδ δ δ δ
Ω

= ⋅∇ + ⋅ + Ψ Ω∫ ∫ ∫ ∫ ∫ ∫ R                            (31) 

 
It is important to note that the first two terms of Eq. (31) are found by using a result from previous work by Palacios, 
et. al.2 based on differential geometry formulas, and this is a key feature differentiating the current formulation from 
other adjoint approaches. The third term of Eq. (31) can be expanded by including the linearized version of the 
governing equations with respect to small perturbations of the design surface, 

 

 
 

( )

( ) ( ) ( )

( )( )

( ) ,

U U F U u
t

F U uU U U
t U U

U A Iu U
t

δ δ δ δ

δ δ δ

δ δ

Ω

Ω

Ω

∂
= + ∇ ⋅ −∇ ⋅ ⊗
∂

⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ⊗
= +∇ ⋅ −∇ ⋅⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦
∂

= + ∇ ⋅ −
∂

R

   
(32) 

 
along with the linearized form of the boundary condition at the surface, 
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( ) ( )S S n Sv n v u n v u n Sδ δ δΩ Ω⋅ = − − ⋅ − ∂ − ⋅                                (33) 

 
where A  is the Jacobian of F  using conservative variables. Eq. (33) can now be introduced into Eq. (31) to produce 
 

 
 

0 0 0 0

( ) ( ) ( ) ( )
f f f ft t t t

T T
S

t S t S t t

J d p Sdsdt d n pdsdt U d dt A Iu Ud dt
t

δ δ δ δ δΩ
Ω Ω

∂
= ⋅∇ + ⋅ + Ψ Ω + Ψ ∇ ⋅ − Ω

∂∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  (34) 

 
 By removing any dependence on variations of the flow variables, δp, the variation of the objective function for 
multiple surface deformations can be found without the need for multiple flow solutions which results in a 
computationally efficient method for aerodynamic design involving many design variables. We now perform 
manipulations to remove this dependence. After changing the order of integration, integrating the third term of Eq. 
(34) by parts gives 

 
 
 0

0 0

( )
f f

f

t t TtT T

t
t t

U d dt U d Ud dt
t t
δ δ δ

Ω Ω Ω

∂ ∂Ψ⎡ ⎤Ψ Ω = Ψ Ω − Ω⎣ ⎦∂ ∂∫ ∫ ∫ ∫ ∫                        (35) 

 
A zero-value initial condition for the adjoint variables can be imposed, and assuming an unsteady flow, the first term 
on the right hand side of Eq. (35) can be eliminated with the temporal conditions below (the cost function does not 
depend on tf). Referring to the trajectory above, the dynamic pressure (and hence the aerodynamic forces) will begin 
and end very close to zero, allowing for a zero final condition. 

 
 
 

0( , ) 0,
( , ) 0.f

x t
x t

Ψ =

Ψ =
                               (36) 

(37) 
 
Now, integrating the fourth term of Eq. (34) yields 
 

 
 

0 0 0

( ) ( ) ( ) ,
f f ft t t

T T T

t t t

A Iu Ud dt A Iu U d dt A Iu Ud dtδ δ δΩ Ω Ω
Ω Ω Ω

⎡ ⎤Ψ ∇ ⋅ − Ω = ∇ ⋅ Ψ − Ω − ∇Ψ ⋅ − Ω⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫  (38) 

 
and applying the divergence theorem to the first term on the right hand side of Eq. (38), assuming a smooth solution, 
gives 

 

 
 

0 0

0

0

( ) ( )

( )

( ) .

f f

f

f

t t
T T

S
t t S

t
T

S
t

t
T

S
t

A Iu U d dt A Iu n Udsdt

A Iu n Udsdt

A Iu n Ud dt

δ δ

δ

δ

∞

Ω Ω
Ω

Ω
Γ

Ω
Ω

⎡ ⎤∇ ⋅ Ψ − Ω = Ψ − ⋅⎣ ⎦

+ Ψ − ⋅

− Ψ − ⋅ Ω

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

   
(39) 

 
With the appropriate choice of characteristic-based boundary conditions, the integral over the far-field boundary can 
be forced to vanish. Combining and rearranging the results from Eqs. (34), (35), (36), (37), and (38) yields an 
intermediate expression for the variation of the cost function, 
 

 
 

0 0 0

0

( ) ( ) ( )

( ) .

f f f

f

t t t
T

S S
t S t S t S

t T
T

t

J d p Sdsdt d n pdsdt A Iu n Udsdt

A Iu Ud dt
t

δ δ δ δ

δ

Ω

Ω
Ω

= ⋅∇ + ⋅ + Ψ − ⋅

⎡ ⎤∂Ψ
− +∇Ψ ⋅ − Ω⎢ ⎥∂⎣ ⎦

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫
 (40) 
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The final term of Eq. (40) can also be made to vanish, if its integrand is zero at every point in the domain. When set 
equal to zero, the terms within the brackets constitute the set of partial differential equations which are commonly 
referred to as the adjoint equations. Therefore, the domain integral will vanish provided that the adjoint equations 
are satisfied as 
 

 
 ( ) 0

T
T A Iu

t Ω

∂Ψ
+∇Ψ ⋅ − =

∂
  in Ω, (41) 

 
or, after taking the transpose, 
 
 

 
( ) 0A Iu

t Ω

∂Ψ
+ − ⋅∇Ψ =

∂
in Ω. (42) 

 
The accompanying boundary condition will be given below. Furthermore, the surface integral in the third term on 
the right hand side of Eq. (40) can be evaluated given our knowledge of A , uΩ , the wall boundary condition, 
( ) 0Sv u nΩ− ⋅ = , and the linearized wall boundary condition in Eq. (33). By leveraging previous derivation of 
Economon, Palacios, et. al9 with some slight modifications and including time integration, it can be shown that 
evaluating the surface integral and rearranging the variation of the functional gives 
 
 

 
0 0

( ) ( ) ( ) ( ) ( ) ,
f ft t

S S E S
t S t S

J d p v v u Sdsdt d n n v n pdsdtρδ υ υ δ ϕ ψ δΩ
⎡ ⎤ ⎡ ⎤= ⋅∇ + ∇ ⋅ + − ⋅∇ + ⋅ − ⋅ − ⋅⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫  (43) 

 
where Ev Hρ ρυ ρψ ρ ϕ ρ ψ= + ⋅ + . Therefore, the adjoint equations with the admissible adjoint boundary condition that 
eliminates the dependence on the fluid flow variations (δp) by forcing the second term on the right hand side of Eq. 
(43) to vanish can be written as 
 

 
 

( ) 0TA Iu
t Ω

∂Ψ
+ − ⋅∇Ψ =

∂
    in Ω, 

( )S S E Sn d n v nρϕ ψ⋅ = ⋅ − ⋅   on S,  
(44) 

 
and the variation of the objective function becomes 
 
 
 

0 0

( ) ( ) ( ) ( ) ,
f ft t

t S t S

JJ d p v v u Sdsdt Sds
S

δ υ υ δ δΩ

∂⎡ ⎤= ⋅∇ + ∇ ⋅ + − ⋅∇ =⎣ ⎦ ∂∫ ∫ ∫ ∫  (45) 

 
where  
 
 

( ) ( ) ( )J d p v v u
S

υ υΩ

∂
= ⋅∇ + ∇ ⋅ + − ⋅∇

∂
 (46) 

 
 
is what we call the surface sensitivity. The surface sensitivity provides a measure of the variation of the objective 
function with respect to infinitesimal variations of the surface shape in the direction of the local surface normal. This 
value is computed at each surface node of the numerical grid at each physical time step with negligible 
computational cost. Note that the final expression for the variation involves only a surface integral at each physical 
time step and has no dependence on the volume mesh. 

C. Application to Spherically-Parameterized Geometries  
 The surface sensitivity discussed in the previous section provides the sensitivity of the chosen functional to 

locally-normal displacements of the surface of interest. Typically, a large enough number of surface nodes is used 
such that using the locations of surface nodes directly as independent variables in an optimization results in an 
optimization problem of impractically high dimensionality. Hence, a parameterization of the geometry is used to 
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reduce the dimensionality via a mapping of the parameters of interest to the positions of the surface nodes. Several 
such mappings are available in the SU2 design suite and in this work we add a spherical parameterization convenient 
to rocket shapes. 

The sensitivity of any geometric parameter to the functional can be expressed as the sum of the dot product of 
the local normal vector, n̂ , with the change in position of the corresponding node due to a change in the parameter, 
xi, summed over the surface (N nodes, indexed by j):     

 
 
 1 1

ˆ
N N

j j j j
x y z

j jj ji i i i i

x y zJ J J n n n
x x S S x x x= =

∂ ∂ ∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⋅ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑

r
n . (47) 

 
(Note that x in Eq. (47) is used to represent both the Cartesian coordinate as well as a specific design parameter.) 
SU2 provides the values of dJ/dS while the values of ∂x/∂xi, ∂y/∂xi, and ∂z/∂xi define the surface parameterization. 
The unit normal vector can be evaluated either from the surface mesh or analytically from the parameterization 
depending on the level of geometric complexity. Here the surface normal vectors are evaluated analytically from 
spherical geometry. 
 For a local spherical coordinate shown above in Fig. 2 with the axis positive forward through the nose, the 
Cartesian coordinates are expressed as 
  

 
 

cos( )
sin( )cos( )
sin( )sin( )

θ
θ φ
θ φ

=
=
=

x r
y r
z r

, (48) 

 
where r is a function of θ and φ. The geometry is parameterized by m control points, ir {i = 1, …, m}. In order to 
achieve the reduction in dimensionality an interpolation scheme is required to determine rj from the set of control 
points { ir }. Differentiating Eqs. (48) and substituting into Eq. (47) yields 
 
 
 

( )
1

cos( ) cos( )cos( ) cos( )sin( )
N

j
x y z j

j ji i

rJ J n n n
r n r

θ θ φ θ φ
=

∂∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ . (49) 

  
 Equation (50) can be used to find the sensitivity of the functional J to changes in ri, provided an interpolation 
operator ∂rj/∂ri is available, given the location and local unit normal vector of each surface node from the adjoint 
surface sensitivities dJ/dS. For an axisymmetric geometry, the unit normal vectors are given by Eqs. (50), 
 

 
 

2

2

2

1

sin( ) cos( ) ,
1

cos( ) sin( ) cos( ),
1

cos( ) sin( ) sin( ),
1

.

x

y

z

rn
r

rn
r

rn
r

drr r
d

θ θ

θ θ φ

θ θ φ

θ

−

+
= −

+
⎛ ⎞−

= ⎜ ⎟
+⎝ ⎠

⎛ ⎞−
= ⎜ ⎟

+⎝ ⎠

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

 (50) 

 
This closes the geometric system, allowing for dJ/dri to be evaluated via drj/dri. Any appropriate numerical method 
can be used to find drj/dri depending on the operator and implementation. Here, a complex step method was used to 
perturb each control point and evaluate drj/dri:  
 
 
 

Im[ ( )]∂ + Δ
=

∂ Δ
j j i i

i i

r r r ri
r r

. (51) 
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VI. Aerodynamic Model 
 This section summarizes the computational fluid dynamics (CFD) model used to evaluate the aerodynamic 
properties of the launch via SU2. Inviscid flow physics were chosen in order to reduce computational cost, the 
overall procedure is unchanged if viscous flow is considered. It is noted, however, that the mesh deformation 
method discussed above can be considerably less robust when boundary layer cells are involved. A 180° model of 
the fairing and a portion of the launch vehicle was created using quadrilateral surface elements and tetrahedral 
volume elements with a layer of pyramid elements between. A hemispherical farfield was placed approximately 30 
vehicle radii away nodes were bunched near the nose and near any corners. The baseline mesh, totaling 
approximately 800,000 cells, is shown below in Fig. 5. 
 

 
 

Figure 5. Inviscid CFD mesh of baseline fairing and portion of the launch vehicle showing detail near the nose of corners of 
the fairing profile. 

VII. Optimization Procedure 
This section summarizes the optimization procedure used. The procedure described above allows for a 

straightforward implementation of well-established optimization algorithms. The locations of the spline control 
points or locations and amplitude of the Hicks-Henne function are continuous variables with simple bounds and it is 
expected that the objective function(s) and nonlinear constraints (both of which are simple functions of the 
aerodynamic quantities CA and CM) will be smooth and continuous in the design space. Hence, standard gradient-
based optimization algorithms10,13,16 can be used and a sequential quadratic programming (SQP) algorithm was 
chosen for use here to make efficient use of the gradient information provided by the adjoint sensitivities.  

The SQP algorithm requires the value of the objective, J, and corresponding gradients, ∂J/∂x, in addition to the 
nonlinear constraint function(s), c, and corresponding gradients, ∂c/∂x, for a given x. The specific formulation of 
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this optimization problem requires CA(x) and mf(x) for objective evaluation and CA(x), CM(x), and mf(x) for 
constraint evaluation. It is useful to summarize the complete process of each in the context of SU2: 

 
Objective Evaluation: 
1. Deform CFD mesh from baseline, x0, to current value, x 
2. Perform a time-accurate flow solution with the deformed mesh over the trajectory 
3. Process the flow solution data (surface integration) at each time step → CA(t) 
4. Perform an adjoint solution of functional CA on the deformed mesh (requires the flow solution data) 
5. Project the gradients from adjoint surface data to the design variables x, at each time step → ∂CA(t)/∂x 
6. Integrate CA(t) and ∂CA(t)/∂x in time over the trajectory data → J, ∂J/∂x 

 
 Constraint Evaluation: 

1. Deform CFD mesh from baseline, x0, to current value, x 
2. Perform time-accurate flow solution on deformed mesh over trajectory 
3. Process flow solution data (surface integration) at each time step → CA(t), CM(t) 
4. Perform adjoint solution of functional CA on deformed mesh (requires flow solution data) 
5. Perform adjoint solution of functional CM on deformed mesh (requires flow solution data) 
6. Project gradients from adjoint surface data to design variables x at each time step → ∂CA(t)/∂x, ∂CM(t)/∂x 
7. Integrate CA(t), ∂CA(t)/∂x, CM(t), ∂CM(t)/∂x in time over the trajectory data → c, ∂c/∂x 

 
 Of the items above, the flow and adjoint solutions required the greatest computational expense with adjoint 
solutions somewhat more expensive than flow solutions. Volume mesh deformation was a small but significant 
expense. It is noted that, due to the wide range of flow conditions and static CFD mesh (with respect to the flow 
features) very conservative solver settings were required throughout the entire time-accurate solution. This is 
discussed in more detail in the following section.  
 The SQP algorithm will efficiently find a local minimum. In order to improve the chances of capturing the global 
minimum several different values of x0 were used as initial points in addition to the baseline shown above. Initial 
points were “corners” of the design space, or locations were at least two geometric constraints intersected. It is noted 
that this procedure is heuristic and does not guarantee global minimization but has been effective method to improve 
coverage of the design space in previous studies6. 

VIII. Results & Discussion 

A. Baseline Vehicle  
This section describes the results of a specific case used to demonstrate the method in addition to discussing 

future directions of research. The baseline medium-lift launch vehicle parameters used for the sample results (and to 
generate the trajectory data shown above) are summarized in Table 1. The fairing nose was parameterized with four 
spline control points, x0 = {6.0 m, 5.0 m, 4.0 m, 3.0 m}, at fixed θ = {0, π/16, π/8, π/4}. Fixed θ was chosen only to 
reduce the problem dimensionality and hence computational expense. Recall that r(π/2) is fixed at Rcyl and both ends 
of the spline are constrained by ∂r/∂θ = 0.  

 
Launch Vehicle Parameters 
 
First stage structural mass      = 13,000 kg 
First stage propellant mass      = 240,000 kg 
Frist stage Isp          = 300 s 
Second stage structural mass     = 3,600 kg 
Second stage propellant mass     = 45,000 kg 
Second stage Isp         = 350 s 
Payload Mass         = 8,000 kg 
Propellant Mass at Fairing Deployment  = 43,000 kg 
Reference Stress         = 275 MPa (Al 6061-T6 yield) 
Reference Skin Thickness      = 2.54 mm (0.10”) 
Reference Vehicle Radius      = 1.85 m 
Fairing Cylinder Radius       = 2.60 m 
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Fairing Surface Mass Density     = 11 kg/m2 (general carbon / Al composite)  
Limit Cload          = 0.100 
Ideal Vehicle ΔV (mf = 0, CA = 0)    = 9.596 km/s 
 
Table 1. Summary of launch vehicle parameters required for fairing optimization. 
 
The baseline vehicle and fairing yielded the performance summarized in Table 2. Flow and adjoint contour plots 

corresponding to the baseline design are shown in Fig. 6 and Figs. 7-10, respectively.  
 
x0             = {6.0 m, 5.0 m, 4.0 m, 3.0 m}, θ = {0, π/16, π/8, π/4} 
Total Vehicle ΔV         = 9.466 km/s 
Fairing Mass         = 2,381 kg 
Cload            = 0.0986   
 
Table 2. Summary of launch vehicle parameters required for fairing optimization. 
 
 

 
 Figure 6. Mach contours for the baseline design under maximum q∞ conditions and α = 5.0°.  
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Figure 9. Ψρ contours for the baseline design under maximum q∞ conditions and α = 5.0° for functional CM. 

 
 

 
Figure 10. Shape sensitivity (∂J/∂S) contours for the baseline design under maximum q∞ conditions and α = 5.0° for 
functional CM. 

B. Optimum Design  
 Qualitatively, the optimization procedure is a balance between the conflicting effects of geometry on mass 
(surface area) and drag. Minimizing the mass of the fairing will tend to shorten it and move the profile inward 
toward the axis to reduce the surface area. Minimizing the drag alone results in a longer profile with higher L/R but 
also larger surface area. The drag (more specifically CA) is shared by both the objective function and the structural 
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constraint, though in the formulation of the constraint, Eq. (9), the bending moment is emphasized. Based on this 
intuition and the form of the surface sensitivity contours with respect to J we should expect an optimum shape that 
reduces r(θ) everywhere possible until the drag penalty incurred becomes too large. The length of the fairing (r at 
the nose) may increase or decrease depending on the trade between mass and drag. The optimal profile is shown 
below in Fig. 11.   
  
 Optimum Design 
 
 x*             = {6.2871 m, 4.5578 m, 3.4071 m, 2.7479 m}, θ = {0, π/16, π/8, π/4} 

Total Vehicle ΔV         =  9.501 km/s 
Fairing Mass         =  2,307 kg 

 Cload            = 0.08655 
 

 
Figure 11. Cross-sectional view of an optimum design (blue) vs. the baseline design (black). Note the “pinched” shape of  
the fairing which reduces the fairing’s mass while maintaining comparable aerodynamic performance at higher M∞.  

 
 It is worth noting that the profile above a ctually causes a performance reduction (larger CA but lower mass) 
when analyzed only at the maximum q∞ condition. This underscores the need to simulate over the entire atmospheric 
portion of the ascent trajectory as the optimum profile has superior performance for much of the flight after 
maximum q∞ (M∞ > 1.5). At high M∞ the more-pointed nose acts like a “sting” while the rest of the surface 
experiences flow behind an oblique shock. This reduces the sensitivity of the rest of the surface geometry and allows 
r(θ) to move toward the axis and save mass. In addition, it is noted that that value of the constraint, Cload, actually 
decreased from its nominal value in the optimum design.   

C. Improvements & Future Directions  
 Of the many steps listed above required to evaluate a given design and its corresponding gradients, the 
combination of grid deformation CFD solutions (flow and adjoint) are currently the least robust. The extreme nature 
of the flight regime results in a high sensitivity of convergence to grid quality, especially near the nose at high M∞. 
the spring-analogy solver, while generally very robust, eventually creates cells which are more skewed than those of 
the original mesh as x moves away from x0. Hence, at some points in the overall procedure above, an intermediate 
x* was re-meshed to reset the grid deformation range. Were viscous flow physics used, this issue would be 
exacerbated. Finally, gradient-based algorithms like SQP are generally not robust against objective or constraint 
functions that cannot be evaluated or yield inaccurate results (practically, flow or adjoint solutions which do not 
converge properly).  
 This procedure can hence be improved in a number of ways. First, the use a more tolerant optimization 
algorithm, such as particle swarm optimization, may be able to tolerate x at which results are unavailable or of poor 
accuracy (at the likely expense of more function evaluations). Second, a more robust grid deformation algorithm 
would increase the range of x over which designs could be accurately evaluated. As of this writing, an elasticity-
based grid deformation capability is nearing completion in the SU2 suite and will be utilized in future studies. In 
addition, modifying the flow and adjoint solution algorithm to allow for settings which are a function of the free 
stream conditions would accelerate convergence performance while safeguarding conditions at which conservative 
settings are required. This improvement is also expected in SU2 and will be utilized in future studies.  

 Indented profile

 Elongated nose

 Payload Volume  Vehicle
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 Finally, the optimization problem as formulated here is merely a subset of a larger MDO problem as discussed 
above. Some of the neglected dependencies, including the fairing’s effect on the trajectory near maximum q∞ and 
the sensitivity of the launch vehicle’s structural mass to the loads applied by the fairing, are likely comparable in 
effect to those studied here. Bringing the trajectory calculation and a structural analysis – even a relatively simple or 
low-fidelity one – into the optimization loop would improve the completeness of the results without adding 
substantially to the overall computational cost.  
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