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The goal of this paper is to present a verification and validation study of HiFiLES: a high-order LES solver
developed in the Aerospace Computing Laboratory (ACL) at Stanford University. HiFiLES has been built on
top of SD++ (Castonguay et al.) and achieves high-order spatial discretizations with the Energy-Stable Flux
Reconstruction (ESFR) scheme on unstructured grids in two and three dimensions. The high parallelizability
of this scheme motivates the solver’s ability to run in a multi-GPU (Graphical Processing Unit) environment.
We intend for this paper to be the main reference for HiFiLES and serve (with the previous SD++ papers) as a
reference for researchers that would like to develop or implement high-order numerical schemes based on an
Energy-Stable Flux Reconstruction (ESFR) approach.

I. Introduction

Over the last 20 years, much fundamental work has been done in developing high-order numerical methods for
Computational Fluid Dynamics. Moreover, the need to improve and simplify these methods has attracted the interest
of the applied mathematics and the engineering communities. Now, these methods are beginning to prove themselves
sufficiently robust, accurate, and efficient for use in real-world applications.

However, low-order numerical methods are still the standard in the aeronautical industry. There has been a long-
term, sustained scientific and economical investment to develop this successful and robust technology. Currently,
an industry-standard, second-order finite volume computational tool performs adequately well in a broad range of
aeronautical engineering applications. For that reason, the introduction of new, high-order numerical schemes in the
aeronautical industry is challenging, particularly in areas where the low-order numerical methods already provide the
required robustness and accuracy (keeping in mind the limitations of current turbulence model technology).

Thanks to new and emerging aircraft roles (very small or large concepts, very high or low altitude, quiet vehicles,
low fuel consumption vehicles, etc.), revolutionary aircraft design concepts will appear in the near future, and the
need for high-fidelity simulation techniques to predict their performance is growing rapidly. Undoubtedly, high-order
numerical methods are starting to find their place in the aeronautical industry.

Unsteady simulations, including those of flapping wings, wake capturing, noise prediction, and turbulent flows via
Large Eddy Simulation (LES), are just a few examples of computations that could benefit from high-order numerical
methods. In particular, high-order methods have a significant edge in applications that require accurate resolution
of the smallest scales of the flow. Such situations include the generation and propagation of acoustic noise from an
airframe, or at the limits of the flight envelope where unsteady, vortex-dominated flows have a significant effect on
aircraft performance. On a given grid, utilizing a high-order representation enables smaller scales to be resolved with
a greater degree of accuracy than standard second-order methods. Furthermore, high-order methods are inherently
less dissipative, resulting in less unwanted interference with the correct development of the turbulent energy cascade.
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This factor makes the combination of high-order numerics with LES modeling very powerful, with the potential
to significantly improve upon the accuracy and computational cost of the standard approach of coupling LES with
second-order methods. The amount of computing effort to achieve a small error tolerance can also be much smaller
with high-order than second-order methods. Even real time simulations (one second of computational time, one
second of real flight), could benefit from high-order algorithms that feature more intensive computation within each
mesh element (ideal for vector machines and new computational platforms like GPUs, FPGAs, coprocessors, etc).

However, before claiming the future success of high-order numerical methods in industry, two main difficulties
should be overcome: a) high-order numerical schemes must be as robust as state-of-the-art low-order numerical meth-
ods, b) the existing level of verification and validation (V&V) in high-order CFD codes should be similar to the typical
level of their low-order counterparts.

During the last decade, the Aerospace Computing Laboratory (ACL) of the Department of Aeronautics and Astro-
nautics at Stanford University has developed a series of high-order numerical schemes and computational tools that
have demonstrated the viability of these schemes. In this paper, a new code named HiFiLES, developed in the ACL
and built on top of SD++ (Castonguay et al.1), is described in detail with a particular emphasis on robustness in a range
of applications and V&V. HiFiLES takes advantage of the synergies between applied mathematics, aerospace engi-
neering, and computer science in order to achieve the ultimate goal of developing an advanced high-fidelity simulation
environment.

In addition to the original characteristics of the SD++ code, HiFiLES includes some important physical models
and computational methods such as: LES using explicit filters and advanced subgrid-scale (SGS) models, high-order
stabilization techniques, shock detection and capturing for compressible flow calculations, convergence acceleration
methodologies like p-multigrid, and local and dual time stepping. Some of these techniques will be described in this
or related papers.

During the development of this software, several key decisions have been made to guarantee a flexible and lasting
infrastructure for industrial Computational Fluid Dynamics simulations:

• The selection of the Energy-Stable Flux Reconstruction (ESFR) scheme on unstructured grids. The flexibility
of this method has been critical to guarantee a correct solution independently of the particular physical charac-
teristics of the problem.

• High performance, materialized in a multi-GPU implementation that takes advantage of the ease of paralleliza-
tion afforded by discontinuous solution representation. Furthermore, HiFiLES aims to guarantee compatibility
with future vector machines and revolutionary hardware technologies.

• Code portability by using ANSI C++ and relying on widely-available, and well-supported mathematical libraries
like Blas, LAPACK, CuBLAS and ParMetis.

• Object oriented structure to boost the re-usability and encapsulation of the code. This abstraction enables modi-
fications without incorrectly affecting other portions of the code. Although some level of performance is traded
for re-usability and encapsulation, the loss in performance is minor.

As the mathematical basis and computational implementation of HiFiLES have been described in previous work1,
the goal of this paper is to illustrate the level of robustness of HiFiLES for interesting problems. This will be accom-
plished via a verification and validation study, which is fundamental for increasing the credibility of this technology
in a competitive industrial framework.

In particular, to ensure that the implementation of the aforementioned features in HiFiLES is correct, the following
verification tests are shown: checks of spatial order of accuracy using the Method of Manufactured Solutions (MMS) in
2D and 3D for viscous flows in unstructured grids. After the Verification, a detailed Validation of the code is presented
to illustrate that the solutions provided by HiFiLES are an accurate representation of the real world. Simulations of
complex flows are validated against experimental or Direct Numerical Simulation (DNS) results for the following
cases: laminar flat-plane, flow around a circular cylinder, SD7003 wing-section and airfoil at 4◦ angle of attack, the
Taylor-Green Vortex, and LES of a square cylinder.

The organization of this paper is as follows. Section II. provides a description of the governing equations. Sec-
tion III. describes the mathematical and numerical algorithms implemented in the code. Section IV. focuses on the V
& V of HiFiLES, and finally, the conclusions are summarized in Section V..

Finally, it is our intent for this paper to be the main reference for work that uses or enhances the capabilities of
HiFiLES, and for it to serve as a sort of reference for researchers and engineers that would like to develop or implement
high-order numerical schemes based on an Energy-Stable Flux Reconstruction (ESFR) approach.

2 of 27

American Institute of Aeronautics and Astronautics



II. Governing Equations

A. Navier Stokes equations

The Navier-Stokes2 equations provide a complete (dynamical) description of a viscous fluid and express the conserva-
tion of mass, momentum, and energy. The complete system of equations (without source terms and assuming adiabatic
boundary conditions at the solid wall) can be written in the following conservative form:

∂U

∂t
+∇ · F = 0 (1)

where F = (F,G,H) = (FI , GI , HI)− (FV , GV , HV ) and

U =


ρ
ρu
ρv
ρw
ρe

 FI =


ρu

ρu2 + p
ρuv
ρuw

ρue+ pu

 GI =


ρv
ρvu

ρv2 + p
ρvw

ρve+ pv

 HI =


ρw
ρwu
ρwv

ρw2 + p
ρwe+ pw

 (2)

FV =


0
σxx
σxy
σxz

uiσix − qx

 GV =


0
σyx
σyy
σyz

uiσiy − qy

 HV =


0
σzx
σzy
σzz

uiσiz − qz

 (3)

As usual, ρ is density, u, v, w are the velocity components in the x, y, z directions, respectively, and e is total
energy per unit mass. In HiFiLES, the pressure is determined from the ideal gas equation of state

p = (γ − 1)ρ

(
e− 1

2

(
u2 + v2 + w2

))
(4)

the viscous stresses are those of a Newtonian fluid

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µδij

∂uk
∂xk

(5)

and the heat fluxes are defined as
qi = −k ∂T

∂xi
(6)

where
k =

Cpµ

Pr
, T =

p

Rρ
(7)

Pr is the Prandtl number, Cp is the specific heat at constant pressure and R is the gas constant. In the case of air,
γ = 1.4 and Pr = 0.72. The dynamic viscosity µ in HiFiLES can be a constant or a function of temperature using
Sutherland’s law.

B. Reynolds Averaged Navier-Stokes (RANS) equations

The compressible Navier-Stokes equations can be used to solve a variety of different flow physics problems, but for
turbulent flows, direct numerical simulation using these equations can become excessively expensive. For engineering
applications, it is customary to perform a Favre averaging procedure on the Navier-Stokes equations in order to solve
for turbulent mean quantities. This leads to a variety of terms which must be modeled in order to provide closure to
the resulting RANS equations3,4. For example, using the one equation Spalart-Allmaras (SA) turbulence model, the
conservative form of the RANS equations is very similar to the Navier-Stokes equations with the following extra terms
included in Eq. 2:

Uν̃ = ρν̃, FI,ν̃ = ρuν̃, GI,ν̃ = ρvν̃, HI,ν̃ = ρwν̃, (8)

FV,ν̃ =
1

σ
(µ+ µψ)

∂ν̃

∂x
, GV,ν̃ =

1

σ
(µ+ µψ)

∂ν̃

∂y
, HV,ν̃ =

1

σ
(µ+ µψ)

∂ν̃

∂w
, (9)
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Sν̃ = cb1 S̃ρνψ +
1

σ
[cb2ρ∇ν̃ · ∇ν̃]− cw1

ρfw

(
νψ

d

)2

. (10)

Note that the flow variables have been redefined as Favre-averaged quantities and Sν̃ is a source term that would
appear on the right hand side of Equation (1). Also, the viscous stresses (Eq. 5) now include the Boussinesq approxi-
mated Reynolds stress terms,

σij = (µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
(µ+ µt)δij

∂uk
∂xk

(11)

and the heat fluxes are redefined as

qi = −Cp
(
µ

Pr
+
µt
Prt

)
∂T

∂xi
(12)

where µt is the dynamic eddy viscosity and Prt is the turbulent Prandtl number. The various terms added by the one
equation SA turbulence model are more precisely defined in Section D..

III. Numerical Methods

In this section the main numerical techniques implemented in HiFiLES will be described. We will emphasize the
critical role of the selected numerical discretization (Flux Reconstruction Method), and its capability to solve CFD
problems using unstructured meshes.

A. Flux Reconstruction Method

What follows is an overview of the flux reconstruction (FR) framework. We start the discussion with the solution of
the advection-diffusion equation in one dimension using the FR approach to illustrate the method. We then proceed
to briefly explain how conservation equations can be solved in multiple dimensions. The Navier-Stokes equations are
a set of coupled conservation equations in multiple dimensions, so the extension of the FR methodology to them is
straightforward. The detailed description of the algorithm used in HiFiLES is given by Castonguay et al.1.

1. Solution of the Advection Equation in One Dimension using the FR Approach

Consider the one-dimensional conservation law

∂u

∂t
+
∂f

∂x
= 0 (13)

in domain Ω, where x is the spatial coordinate, t is time, u –the solution– is a scalar function of x and t, and f –the
flux– is a scalar function of u. Note that by letting f = f(u, ∂u∂x ), Equation 13 becomes a model of the Navier-Stokes
equations.

Let us partition the domain Ω = [x1, xN+1) into N non-overlapping elements with interfaces at x1 < x2 < ... <
xN+1. Then,

Ω =

N⋃
n=1

Ωn (14)

and Ωn = [xn, xn+1) for n = 1, ..., N . To simplify the implementation, let us map each of the physical elements Ωn
to a standard element Ωs = [−1, 1) with the function Θn(ξ), where

x = Θn(ξ) =

(
1− ξ

2

)
xn +

(
1 + ξ

2

)
xn+1 (15)

With this mapping, the evolution of u within each Ωn can be determined with the following transformed conser-
vation equation

∂û

∂t
+

1

Jn

∂f̂

∂ξ
= 0 (16)

where
û = u(Θn(ξ), t) in Ωn (17)
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f̂ = f(Θn(ξ), t) in Ωn (18)

Jn =
∂x

∂ξ

∣∣∣∣
Ωn

(19)

Now, we introduce polynomials of degree p, ûδ and f̂δ , to approximate the exact values û and f̂ , respectively. We
can write these polynomials as

ûδ =

Ns∑
i=1

ûδi li(ξ) (20)

f̂δ =

Ns∑
i=1

f̂δi li(ξ) (21)

where Ns is the number of solution points, ûδi is the current value of the solution approximation function at the ith

solution point in the reference element, f̂δi is the current value of the flux approximation function at the ith flux point
in the reference element, li is the Lagrange polynomial equal to 1 at the ith solution point and 0 at the others, and δ
denotes that the function is an approximation.

Note that the piecewise polynomials might not be continuous (or C0) across the interfaces. In the Flux Recon-
struction approach, the flux used in the time advancement of the solution is made C0 by introducing flux correction
functions.

This can be achieved by finding interface solution values at each element boundary and then correcting the solution.
Let ûδIL and ûδIR be the interface solution values at left and right boundaries of some element, respectively. ûδIL and
ûδIR can be found with a Riemann solver for Discontinuous-Galerkin (DG) methods5. Then, select solution correction
functions gL and gR such that

gL(−1) = 1 , gL(1) = 0 (22)

gR(−1) = 0 , gR(1) = 1 (23)

and let
ûC = ûδ + (ûδIL − ûδL)gL + (ûδIR − ûδR)gR (24)

where superscript C denotes the function has been made continuous (or has been corrected), and ûδL, ûδR represent the
solution approximation evaluated at the left and right boundaries.

Using the values of ûδi and ∂ûC

∂ξ |ξi we then find

f̂δi = f̂

(
ûδi ,

1

Jn

∂ûC

∂ξ

∣∣∣∣
ξi

)
in element Ωn

We can proceed in a similar fashion to correct the flux to obtain

f̂C = f̂δ + (f̂δIL − f̂δL)hL + (f̂δIR − f̂δR)hR (25)

where hR and hL are right and left flux correction functions satisfying the same boundary conditions as gR and gL,
respectively, and f̂δIL and f̂δIR are the interface fluxes found via a Riemann solver. Note that if the flux corresponds to
linear advection, correcting the solution and correcting the flux are equivalent steps.

The solution can then be advanced at each solution point. In semi-discrete form, this is

dûδi
dt

= −∂f̂
C

∂ξ
(ξi) (26)

The FR scheme can be made provably stable for the linear advection-diffusion equation by selecting special types
of correction functions6. In general, these correction functions are polynomials of degree p + 1 so both sides in
Equation (26) are quantities related to polynomials of order p –for consistency7.

Vincent et al.8 have shown that in the case of the 1-dimensional, linear advection equation, the Flux Reconstruction
approach can be proven to be stable for a specific family of correction functions parameterized by a scalar called c. In
addition, they showed that by selecting specific values of c it is possible to recover a particular nodal Discontinuous
Galerkin (DG) method and Spectral Difference (SD), plus a FR scheme that was previously found to be stable by
Huynh9.
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B. Extension to Multiple Dimensions

Extension to multiple dimensions requires formulating multi-dimensional interpolation functions and correction func-
tions that satisfy boundary conditions equivalent to those in Equation (22) for each type of element.

Interpolation bases for quadrilaterals and hexahedra can be obtained via tensor products of the 1-dimensional
interpolation basis. In HiFiLES, we discretize the solution in 3-dimensions in the following way

ûδ(ξ, η, ζ) =

p+1∑
i=1

p+1∑
j=1

p+1∑
k=1

ûδi,j,kli(ξ)lj(η)lk(ζ) (27)

where i, j, k index the solution points along the ξ, η, ζ directions, respectively. The flux is discretized similarly.
The interpolation basis for triangles are described in detail by Castonguay et al.10 and Williams et al.11. The

formulation for tetrahedra is detailed by Williams et al.12. The extension of interpolation polynomials to prisms is
obtained via tensor products of the 1-dimensional basis with the triangular basis1.

In general, the boundary conditions for the correction functions in multiple dimensions can be formulated as

hi(~ξj) · nj = δij (28)

where hi is the vector of correction functions associated with interface point i, ~ξj is the location vector of the jth

interface point, nj is the outward unit normal at interface point j, and δij is the Kronecker delta. Interface points are
located on the boundary of an element.

One of the challenges in the FR approach is finding correction functions that not only satisfy Equation (28) but
also guarantee stability in the linear advection-diffusion case. Correction functions that guarantee such stability exist
for 1-dimensional segments8, triangles10,11, and tetrahedra12. FR schemes with these correction functions comprise
the ESFR family of schemes.

Although formal proofs of stability for the linear advection equation do not exist yet for quadrilaterals, hexahedra,
and prisms, it has been observed that the tensor products of provably stable correction functions used in these elements
maintain stability. In addition, as of now HiFiLES does not have an implementation for pyramidal elements, mostly
because of the challenges involved in finding the respective correction functions that guarantee stability. Nevertheless,
a suggested approach to find such correction functions has been presented by Jameson13.

With regards to time integration, HiFiLES uses an explicit Adaptive Runge-Kutta 45 (RK45) Method and local or
global time stepping. In addition, a polynomial multigrid to improve code convergence is currently being validated.

C. Shock Capturing and Stabilization Models

We use the method of concentration described in14 for detecting shocks on meshes with quadrilateral elements. We are
still in the process of extending the method of concentration to triangles and are currently using Persson and Peraire’s
method15 16 for the same. We have explored both selective addition of artificial viscosity as well as modal order re-
duction for capturing the detected shocks effectively. Persson and Peraire have used this shock capturing tool as a
stabilization method as well in their turbulence calculations. Here we show a viscous case on quads using concentra-
tion method (reproduction of the result in14) and an inviscid case on triangles using Persson and Peraire’s method.

Figures 1 and 2 show the density and energy plots for a Mach 1.2 flow over a NACA 0012 airfoil at a 5◦ angle of
attack. The flow is at Reynolds number of 60000 and we have used 6th order polynomial interpolation in the elements
for the computation. There is a bow shock in front of the airfoil and we see fish-tail shocks at the trailing edge. We
can also see boundary layer formation and a Λ-shock structure on the upper side of the airfoil. Here we have used
simple modal order reduction in elements with the shock sensor value above a certain threshold. Figure 3 shows the
elemental shock sensor values. We can see the shock sensor is able to distinguish between shocks and other smooth
regions enabling the structure of the vortices and boundary layer to be preserved.

Figure 4 shows an inviscid flow of M = 1.6 over a Naca 0012 airfoil at 0◦ angle of attack on a triangle mesh.
Here we use Persson and Peraire’s method for shock detection, and we can see that the shock has been detected and
captured well. A few oscillations still remain near the strong bow shock in front of the airfoil even after enforcement
of continuity of the artificial viscosity coefficients. Figures 5 and 6 show the artificial viscosity being added element-
wise and after continuity enforcement respectively.
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0.4

0.8

1.2

1.6

Density

0.299

1.88

Figure 1: Density contours for viscous flow at M = 1.2 over
a NACA 0012 airfoil at 5◦ AoA with polynomial order 6

1.6

1.8

2

2.2

Energy

1.45

2.26

Figure 2: Energy contours

0.4

0.8

1.2

1.6

2
sensor

0.05

2.01

Figure 3: This figure shows the elemental shock “sensor” for the M = 1.2 viscous case shown in Figure 1

D. Spalart-Allmaras (SA) Turbulence Model and Negative ν̃ Modification

The one equation SA turbulence model is one of the more commonly used turbulence models for solving attached
and moderately separated aerodynamic flows17. The added equation directly solves for turbulent eddy viscosity via
advection, diffusion, production and dissipation. A modified form of the equation can be written as4,18,19:

∂

∂t
(ρν̃) +∇ · (ρν̃u) = cb1 S̃ρνψ +

1

σ
[∇ · ((µ+ µψ)∇ν̃) + cb2ρ∇ν̃ · ∇ν̃]− cw1ρfw

(
νψ

d

)2

(29)

where ν̃ is a modified version of the kinematic eddy viscosity and ν is the kinematic viscosity. The other variables
are defined as:

µt =

{
ρν̃fv1 if ν̃ ≥ 0

0 if ν̃ < 0
where fv1 =

(
ρν̃
µ

)3

(
ρν̃
µ

)3

+ c3v1

(30)
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Figure 4: Mach contours for inviscid flow over NACA 0012 at M = 1.6 and AoA = 0◦ on a triangle-mesh using Persson
and Peraire’s method

S̃ =

S + S̄ if S̄ ≥ −cv2S

S +
S(c2v2

S+cv3 S̄)

(cv3−2cv2 )S−S̄ if S̄ ≤ −cv2S
(31)

S =
√
ω · ω S̄ =

(νψ)2fv2
κ2d2

(32)

fv2 = 1− ψ

1 + ψfv1
(33)

fw = g

[
1 + c6w3

g6 + c6w3

]1/6

g = r + cw2
(r6 − r) r =

νψ

S̃κ2d2
(34)

where S is the magnitude of vorticity, d is the distance to the closest wall, cb1 = 0.1355, σ = 2
3 , cb2 = 0.622,

K = 0.41, Prt = 0.9, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9, cw1 = cb1
K2 + (1+cb2)

σ , cw2 = 0.3, and cw3 = 2.

The diffusion term,∇·(ρν̃u), may become discontinuous in the first derivative leading to oscillations in high-order
polynomials. This can lead to large negative values of the modified eddy viscosity term, ν̃, significant enough to cause
an unbounded solution. To prevent this, the following modification is introduced19.

ψ =

{
0.05log(1.0 + e(20.0χ)) if χ ≤ 10.0,

χ if χ > 10.0,
(35)

χ =
ν̃

ν
(36)
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Figure 5: Element-wise AV coefficients for the inviscid M 1.6
case

Figure 6: AV coefficients with continuity enforcement

E. Large Eddy Simulation

In order to resolve all the scales of motion in a high Reynolds number turbulent flow, the computational mesh would
have to be exceedingly fine. A practical solution is to employ the Large Eddy Simulation (LES) formulation, which
only resolves the larger scales of motion and thus allows for the use of coarser meshes.

The effect of the unresolved or subgrid-scale (SGS) dynamics on the solution is accounted for by an SGS model
for the subgrid-scale stress τij , which is added to the viscous stress tensor σij given by (5):

σij = 2µSdij + τij , (37)

Sdij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
. (38)

The standard Smagorinsky model20 is available in HiFiLES:

τij = 2µtS
d
ij , (39)

µt = ρC2
S 42 |Sd|, (40)

|Sd| =
√

2SdijS
d
ij , (41)

where µt is the eddy viscosity, CS = 0.1 is the Smagorinsky coefficient and4 is the filter width. In HiFiLES the filter
width is given by (in 3D):

4 = α(vol)1/3, (42)

where α ≥ 1 is a user-defined scaling factor and vol is the element volume.
HiFiLES also includes the Wall-Adapting Local Eddy-Viscosity (WALE) model21 and the Similarity model22.

The Similarity model incorporates a low-pass filtering operator, for which several choices are available in HiFiLES: a
discrete Gaussian filter23, a high-order commuting Vasilyev-type filter24,25 and a modal Vandermonde-type filter26.

The modal filter can be used on unstructured tetrahedral meshes. For details of these operators, see Lodato,
Castonguay and Jameson23 and Bull and Jameson27. One can combine the similarity model with the Smagorinsky or
WALE model to form a mixed SGS model. The WALE-similarity mixed (WSM) model, first proposed by Lodato et
al.28, was used in simulations of the flow over a square cylinder (see Section G.).

F. Computing Architecture and Scalability

The HiFiLES code has been designed to work on multi-CPU as well as multi-CPU-GPU platforms. The Flux Re-
construction method in its current form with explicit time-stepping has a great potential for parallelization. Since the
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solution points are not explicitly shared between elements, most of the computations are element-local enabling an
efficient use of shared memory on GPUs. Also, several computations are independent for each solution point and
the highly parallelizable nature of GPUs becomes very useful. A detailed description of the parallelization of the FR
method, along with scalability and performance analysis has been performed in1.

IV. Verification and Validation

A. Method of Manufactured Solutions

This section describes the test of HiFiLES’s spatial order of accuracy using the Method of Manufactured Solutions
(MMS) in 2D and 3D for viscous flows. As shown by Salari et. al29, the MMS test rigorously assesses the correctness
of implementation of a solver of Partial Differential Equations. We perform the MMS test in grids using simplex
elements, as these are crucial for simulations in unstructured meshes and have a more complex implementation than
squares and hexahedra.

The MMS test for NS solvers requires checking the solver’s solution against an exact solution. Such an exact
solution can be chosen arbitrarily. The NS equations can be satisfied with this arbitrary solution by including a time-
dependent source term in the equations. Then, we solve

∂U

∂t
+∇ · F = S (43)

For the following tests, we selected a smooth exact solution, so aliasing does not pollute the results. We picked

U2D =


sin (k(x+ y)− ωt) + a
sin (k(x+ y)− ωt) + a
sin (k(x+ y)− ωt) + a

(sin (k(x+ y)− ωt) + a)2

 U3D =


sin (k(x+ y + z)− ωt) + a
sin (k(x+ y + z)− ωt) + a
sin (k(x+ y + z)− ωt) + a
sin (k(x+ y + z)− ωt) + a

(sin (k(x+ y + z)− ωt) + a)2

 (44)

To find the value of S, we plug the values of our selected U into the left-hand side of Equation (44) and simplify.
The resulting expression is S. We let Pr= 0.72, γ = 1.4, k = π, ω = π, a = 3.0 and µ = 0.001.

The meshes used have dimensions [−1, 1]× [−1, 1] in 2D and [−1, 1]× [−1, 1]× [−1, 1] in 3D. Periodic boundary
conditions were applied on the boundaries of the square and cube domains. Uniform square and cubic meshes were
created and then each element was subdivided into triangles or tetrahedra. Two triangles were created from each
square, and six tetrahedra were created from each cube. Consequently, in 2D a N ×N mesh contains 2N2 triangles,
and in 3D a N ×N ×N mesh contains 6N3 tetrahedra.

In 3D, the time step was 1e−4 seconds and 10 seconds of flow were simulated. In 2D, the time step was 1e−6
seconds and 1 second of flow was simulated. The time-stepping scheme used was the low-storage, 4th order accurate
RK45 method30.

Polynomial Order Mesh: 2x2x2 4x4x4 8x8x8 16x16x16 Overall Order of Accuracy

p = 1
L2 error 5.76e-01 1.35e-01 3.22e-02 7.90e-03
O(L2) 2.10 2.06 2.03 2.06

p = 2
L2 error 4.09e-01 5.52e-02 6.87e-03 8.53e-04
O(L2) 2.89 3.01 3.01 2.97

p = 3
L2 error 9.77e-02 5.97e-03 3.78e-04
O(L2) 4.03 3.98 4.01

p = 4
L2 error 1.12e-02 6.39e-04 2.07e-05
O(L2) 4.13 4.95 4.54

p = 5
L2 error 1.53e-01 5.08e-03 6.92e-05
O(L2) 4.91 6.20 5.55

Table 1: Accuracy of HiFiLES for NS equations with source term in tetrahedral meshes at t = 10. L2 error is the
L2-norm of the error in the energy field: ρe

Tables (3) and (1) show the spatial order of accuracy achieved when calculating the energy fields ρe in 2D and
3D, respectively. Tables (4) and (2) show the order of accuracy for the gradient of the energy field ∂

∂xi
(ρe) in 2D and
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Polynomial Order Mesh: 2x2x2 4x4x4 8x8x8 16x16x16 Overall Order of Accuracy

p = 1
L2 error 1.98e+01 9.57e+00 4.55e+00 2.19e+00
O(L2) 1.05 1.07 1.06 1.06

p = 2
L2 error 1.17e+01 2.98e+00 7.10e-01 1.71e-01
O(L2) 1.97 2.07 2.06 2.03

p = 3
L2 error 3.17e+00 3.81e-01 4.73e-02
O(L2) 3.06 3.01 3.03

p = 4
L2 error 5.21e-01 4.27e-02 2.69e-03
O(L2) 3.61 3.99 3.80

p = 5
L2 error 3.20e+00 1.88e-01 4.79e-03
O(L2) 4.09 5.29 4.69

Table 2: Accuracy of HiFiLES for NS equations with source term in tetrahedral meshes at t = 10. L2 error is the
L2-norm of the error in the gradient of the energy field: ∂

∂xi
(ρe)

Polynomial Order Mesh: 4x4 8x8 16x16 32x32 64x64 Overall Order of Accuracy

p = 1
L2 error 7.92e-01 1.84e-01 4.36e-02 1.07e-02 2.68e-03
O(L2) 2.10 2.08 2.03 2.00 2.05

p = 2
L2 error 1.29e-01 1.61e-02 1.95e-03 2.33e-04 2.86e-05
O(L2) 3.00 3.05 3.06 3.03 3.04

p = 3
L2 error 1.01e-02 9.25e-04 5.71e-05 3.65e-06 2.35e-07
O(L2) 3.45 4.02 3.97 3.96 3.88

p = 4
L2 error 2.60e-03 6.33e-05 2.00e-06 6.49e-08 3.62e-09
O(L2) 5.36 4.98 4.95 4.16 4.88

p = 5
L2 error 7.15e-05 3.87e-06 6.31e-08
O(L2) 4.21 5.94 5.07

Table 3: Accuracy of HiFiLES for NS equations with source term in triangular meshes at t = 1. L2 error is the
L2-norm of the error in the energy field: ρe

Polynomial Order Mesh: 4x4 8x8 16x16 32x32 64x64 Overall Order of Accuracy

p = 1
L2 error 1.61e+01 8.31e+00 3.81e+00 1.71e+00 7.84e-01
O(L2) 0.96 1.12 1.15 1.13 1.10

p = 2
L2 error 4.05e+00 8.16e-01 1.90e-01 4.54e-02 1.11e-02
O(L2) 2.31 2.11 2.06 2.04 2.12

p = 3
L2 error 4.71e-01 6.39e-02 7.03e-03 7.75e-04 8.84e-05
O(L2) 2.88 3.18 3.18 3.13 3.11

p = 4
L2 error 1.01e-01 4.30e-03 2.31e-04 1.41e-05
O(L2) 4.56 4.22 4.04 4.27

p = 5
L2 error 5.04e-03 2.50e-04 7.80e-06
O(L2) 4.33 5.00 4.67

Table 4: Accuracy of HiFiLES for NS equations with source term in triangular meshes at t = 1. L2 error is the
L2-norm of the error in the gradient of the energy field: ∂

∂xi
(ρe)
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3D, respectively. Because of the exact solutions that were picked, the exact values of the gradients of ρe in the x, y, z
directions are equal. The “Overall Order of Accuracy” is the slope of the linear best-fit of each of the error vs. grid
size data sets.

As expected5, the order of accuracy of the solution is p+1 and the order of accuracy of the gradient of the solution
is p, where p is the order of the polynomial used to approximate the solution fields. In the simulations with p = 5, the
relatively large time step introduces errors larger than the spatial discretization errors. Hence we observe sub-optimal
orders of convergence on the coarsest meshes.

B. Subsonic laminar flat-plate

Computations of the flow over a subsonic flat-plate have been performed and validated against the Blasius solution for
a laminar boundary layer. The flow conditions are Mach number 0.5, 0◦ angle of attack and Reynolds number 1 · 106

based on the plate length. The governing equations are the 2D Navier-Stokes equations with constant ratio of specific
heats of 1.4, Prandtl number of 0.72 and constant dynamic viscosity of 1.827 · 10−5Pa · s.

Mesh First cell height # of cells in boundary layer p3 p4 p5 p6

Mesh a0 (140 = 14x10) 0.00075 2 × × × !

Mesh a1 (560 = 28x20) 0.000375 4 × × ! !

Mesh a2 (2240 = 56x40) 0.0001875 8 × ! ! !

Mesh a3 (8960 = 112x80) 0.0000935 16 ! ! ! !

Table 5: HiFiLES convergence using different grids and polynomial order. × /!indicates not converged/converged
respectively

The objective of this study is to determine the minimum number of elements and the order of polynomial required
to converge the flat-plate simulation using HiFILES. Four different numerical grids have been used in this study (with
2, 4, 8, and 16 elements inside the boundary layer) and four polynomial orders (p3–p6). The results, summarized in
Table 5, show that a minimum number of elements is needed in the boundary layer, depending on the polynomial
order, to obtain satisfactory convergence (free from inter-element jumps).

Figure 7: Detail of the flat-plate leading edge (x=0.0,
mesh a2). Simulation with p = 4.

Figure 8: Flow solution at the end of the flat-plate (x=1.0,
mesh a2). Simulation with p = 4.

The results are compared with the Blasius solution for laminar boundary layer with satisfactory results, and some
details of the solutions are presented in Fig. 7 (leading edge), and Fig. 8 (end of the flat-plate). It is important to note
that in this particular case (mesh a2) the flat-plate boundary layer is captured using 8 elements, while in a second order
solver it would be necessary to place about 30 elements inside the boundary layer.
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Figure 9: Convergence comparison (3rd order, finest
grids).

Figure 10: Comparison of HiFiLES with SU2 using a
similar time integration scheme.

To finalize, it is critical to note that the absence of a local time stepping technique in HiFiLES increases the
required number of iterations to obtain a converged solution. However, we have noticed an improvement of the rate
of convergence as we refine the grid (see Fig. 9). The obtained convergence rate is comparable to a second order
numerical code (e.g. SU2 31,32) running using a similar numerical time integration (see Fig.10).
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C. Circular Cylinder

The classic test case of laminar flow past a circular cylinder at low Reynolds number has also been chosen as a
verification and validation case for the 2D Navier-Stokes equations in HiFiLES, and the results are compared to
existing experimental data and simulation results33. Two separate cases are computed: first, the steady flow past the
cylinder at Re = 20, and second, the unsteady flow past the cylinder at Re = 100, where the Reynolds number is
based upon the diameter of the cylinder. For both cases, the Mach number is set to 0.1 in order to recover nearly
incompressible flow for comparisons with the existing incompressible results. The remaining flow conditions are 0◦

angle of attack, a constant ratio of specific heats of 1.4, a Prandtl number of 0.72, a free-stream temperature of 300
K, and a free-stream dynamic viscosity of 1.853 · 10−5Pa · s (laminar viscosity varies according to Sutherland’s law
during the simulation).

The two simulations are performed with third order polynomials on a mesh with 4988 total elements that contains
quadrilateral elements near the body of the cylinder and triangular elements out to the far-field. There is a small
refinement box immediately downstream of the cylinder to help resolve features in the wake. The rectangular far-field
boundaries are located approximately 30 diameters away from the cylinder in the upstream, upward, and downward
directions and 50 diameters away in the downstream direction. A view of the mesh near the cylinder surface is shown
in Fig. 11.

(a) Zoom view of the mesh near the cylinder. (b) X-velocity contours and streamlines around the circular cylinder for
Re = 20.

Figure 11: The mesh for the circular cylinder simulations along with x-velocity contours for the Re = 20 case.

The flow around the cylinder for Re = 20 is steady, and it features a large recirculation region behind the cylinder.
Fig. 11 presents x-velocity contours around the cylinder along with streamlines. The length of the recirculation region
can be determined from the streamlines, and a length of approximately one cylinder diameter agrees well with reported
results forRe = 20. The coefficient of drag computed by HiFiLES is 2.043, which is close to the value of 2.01 reported
by Park et al. Pressure contours around the cylinder are shown in Fig. 12.

When the Reynolds number is increased to 100, the flow around the cylinder becomes unsteady and exhibits
periodic vortex shedding. This periodic shedding in the wake behind the cylinder can be seen in the instantaneous
contours of x-velocity and vorticity in Fig. 13, and it also results in periodic fluctuations in the force coefficients on the
cylinder. HiFiLES reports an average drag coefficient of 1.339 with a maximum deviation from this value of 0.0092,
which agree excellently with the values reported by Park et al. of 1.33 and 0.0091 for the average Cd and maximum
deviation from it, respectively. Instantaneous pressure contours for the Re = 100 case can be seen in Fig. 12. The
asymmetry that is visible in the pressure contours contributes to the variability in the drag coefficient.
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(a) Pressure contours for the Re = 20 case. (b) Pressure contours for the Re = 100 case.

Figure 12: Pressure contours for the steady and unsteady (instantaneous) cylinder cases.

(a) X-velocity contours around the circular cylinder for Re = 100. (b) Vorticity contours for the Re = 100 case.

Figure 13: Instantaneous solution contours for the unsteady cylinder case.
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D. SD7003 airfoil at 4◦ angle of attack

Abundant literature documents flow around a SD7003 infinite wing and airfoil. Hence, physical experiments34,35 and
numerical simulations36–40 of flow over this geometry can be used to benchmark HiFiLES.

The simulations on the 2D geometry were performed on a circular domain with a radius of 50c, where c is the
airfoil’s cord length, centered at the leading edge of the airfoil. The boundary conditions are characteristic on the outer
edge and adiabatic no-slip wall on the airfoil. The Mach number for all simulations was M = 0.2. The reported lift
and drag coefficients in Table (6) correspond to the average of lift and drag coefficients over 13 periods after the flow
reached a pseudo-periodic state. More details and figures of the detailed meshes are provided by Williams41. The total
number of elements in the simulation was N = 25, 810.

Re = 10K Re = 22K Re = 60K
Source CL CD CL CD CL CD
Uranga et al.40 0.3755 0.04978 0.6707 0.04510 0.5730 0.02097
cdg, κdg 0.3719 0.04940 0.6722 0.04295 0.5831 0.01975
c+, κ+ 0.3713 0.04935 0.6655 0.04275 0.5774 0.02005

Table 6: Time-averaged values of the lift and drag coefficients for the SD7003 airfoil flows with Re =
10, 000, 22, 000, 60, 000. For information on the schemes labeled cdg, κdg , and c+, κ+, the reader is referred to
Williams’s thesis41

(a) Density contours (b) Vorticity contours

Figure 14: Density and vorticity contours for the flow with Re = 10, 000 around the SD7003 airfoil. The results were
obtained using a polynomial basis with p = 2 on an unstructured triangular grid with N = 25, 810 elements

The average lift and drag coefficients are in close agreement with the results by Uranga el. al40. The density
contours in Figures (14),(15), and (16) show that vortical structures are captured for a reasonable distance away from
the airfoil despite the fact that elements are coarser away from the airfoil.
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(a) Density contours (b) Vorticity contours

Figure 15: Density and vorticity contours for the flow with Re = 22, 000 around the SD7003 airfoil. The results were
obtained using a polynomial basis with p = 2 on an unstructured triangular grid with N = 25, 810 elements

(a) Density contours (b) Vorticity contours

Figure 16: Density and vorticity contours for the flow with Re = 60, 000 around the SD7003 airfoil. The results were
obtained using a polynomial basis with p = 2 on an unstructured triangular grid with N = 25, 810 elements
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E. SD7003 wing section at 4◦ angle of attack

To validate HiFiLES’s performance in 3D simulations, we extrude the SD7003 geometry from Section(D.) by 0.2c in
the z-direction and apply periodic boundary conditions at z = 0 and z = 0.2c. Table (7) shows the time-averaged lift
and drag coefficients. The total number of tetrahedral elements is N = 711, 332.

Re = 10K
Source CL CD
Uranga et al.40 0.3743 0.04967
cdg, κdg 0.3466 0.04908
c+, κ+ 0.3454 0.04903

Table 7: Time-averaged values of the lift and drag coefficients for the SD7003 wing-section in a flow with Re =
10, 000

(a) Density contours (b) Vorticity contours

Figure 17: Density and vorticity isosurfaces colored by Mach number for the flow with Re = 10, 000 around the
SD7003 wing-section. The results were obtained using a polynomial basis with order p = 3 on an unstructured
tetrahedral grid with N = 711, 332 elements.
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F. Taylor-Green Vortex at Re = 1,600

The Taylor-Green Vortex (TGV) is a simple test of the resolution of the small scales of a turbulent flow by a numerical
method. The compressible TGV at Re = 1600 was one of the benchmark problems in the 1st and 2nd International
Workshops on High-Order CFD Methods42. A reference solution was computed by Debonis43 using a high-order
dispersion relation-preserving (DRP) scheme on a mesh of 5123 elements. The results presented here were obtained
by Bull and Jameson using FR to recover the fourth-order-accurate DG and SD schemes in HiFiLES27,44. We also
compare our results to those of Beck and Gassner45, who used a fourth-order filtered DG method on a mesh of 643

elements. From a simple initial condition in a triply-periodic box of dimensions [0 : 2π]3, interactions between
vortices cause the flow to develop in a prescribed manner into a mass of elongated vortices across a range of scales.
The initial condition is specified as

u(t0) = u0 sin(x/L) cos(y/L) cos(z/L), (45)
v(t0) = −u0 cos(x/L) sin(y/L) cos(z/L), (46)
w(t0) = 0, (47)

p(t0) = p0 +
ρ0V

2
0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
, (48)

where L = 1, u0 = 1, ρ0 = 1 and p0 = 100. The Mach number is set to 0.08 (consistent with the initial pressure p0)
and the initial temperature is 300K.

Figs. 18 (a) and (b) show the volume-averaged kinetic energy 〈k〉 on (a) hexahedral meshes of 163, 323 and
643 elements and (b) tetrahedral meshes (formed by splitting the hexahedral meshes in six). The reference solution,
labelled as‘DRP-512’ is plotted for comparison. Figs. 18 (c) and (d) show the kinetic energy dissipation rate, given by
ε = −d〈k〉/dt versus the reference solution and the results of Beck and Gassner45, labelled as‘Beck-DG-64x4’. On
the finest hexahedral and tetrahedral meshes the kinetic energy and dissipation rate predictions match the reference
solution, demonstrating that the high-order numerical scheme is able to resolve the important flow dynamics on a
relatively coarse mesh. As a qualitative measure of the resolution of the turbulent flow structures, Figure 19 shows
isosurfaces of the q criterion at four times during the simulation. The evolution of complex small scale structures is
evident.
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(a) 〈k〉, hexahedral meshes
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(b) 〈k〉, tetrahedral meshes
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(c) −d〈k〉/dt, hexahedral meshes
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(d) −d〈k〉/dt, tetrahedral meshes

Figure 18: Taylor-Green vortex results on hexahedral and tetrahedral meshes from Bull and Jameson 27. (a, b) Evolution of
average kinetic energy 〈k〉; (c, d) dissipation rate −d〈k〉/dt. ‘SD-M ×N ’ refers to M3 mesh, N th-order accurate SD scheme. (-
- -) 4th-order DG on 643 mesh 45; (◦) DNS 43.
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(a) t = 2.5, Q = 0.5 (b) t = 5, Q = 1.5

(c) t = 7.5, Q = 1.5 (d) t = 10.75, Q = 1.5

Figure 19: TGV solution on the fine mesh using fourth order accurate DG method, showing isosurfaces of q criterion
colored by velocity magnitude at time t = 2.5 to 10.75 seconds.
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G. LES of Flow Over a Square Cylinder at Re = 21,400

Using the FR method to recover the fourth-order accurate SD scheme, the flow over a square cylinder of side D in a
domain of 21D×12D×3.2D (see Figure 20) at Re = 21, 400 and Mach 0.3 was simulated, for which Laser Doppler
Velocimetry (LDV) experimental data is available46,47. A tetrahedral mesh of 87,178 elements was generated giving a
total of 1.74M degrees of freedom (D0F) since there are 20 solution points per element at fourth order accuracy. Time
discretization was by the fourth-order five-stage explicit RK scheme. A total time of 250 seconds was simulated and
time-averaged quantities were calculated over the last 100 seconds (approx. 5 flow-through periods). The WSM model
(see Section E.) based on the modal Vandermonde filter27 was used with the Breuer-Rodi three-layer wall model48

within 0.2D of the wall. The computation took around 60 hours on 7 GPUs in the lab’s own cluster. Figure 20 shows
the computational mesh including all the DoFs. Figure 21 shows an isosurface of the q-criterion colored by velocity
magnitude, illustrating the structures present in the turbulent boundary layer and wake. Figures 22 (a, b) show the
normalized mean streamwise and vertical velocity components 〈u〉/uB and 〈v〉/uB respectively along several vertical
lines in the wake. Figures 22 (c, d) show the normalized mean Reynolds stress components 〈u′u′〉/u2

B and 〈u′v′〉/u2
B

along the same lines. For comparison, high-order LES results computed by Lodato and Jameson23 using the SD
method and the WSM model on a hexahedral mesh of 2.3M DoF are plotted. Mean velocities are accurately predicted
although the accuracy is reduced near the cylinder owing to the coarse tetrahedral resolution in the boundary layer.
The Reynolds stresses are less accurately predicted than the mean velocities but are broadly correct. These results
highlight the advantages of using HiFiLES for LES of turbulent flows: the ability to obtain good results on coarse
meshes and the ability to use unstructured tetrahedral meshes.

(a) geometry (b) boundary layer mesh

Figure 20: Square cylinder geometry and tetrahedral boundary layer mesh showing all degrees of freedom
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Figure 21: Isosurface of the q-criterion colored by velocity magnitude showing the wake behind the square cylinder
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(a) Mean streamwise velocity 〈u〉/uB

(b) Mean vertical velocity 〈v〉/uB

(c) Mean Reynolds stress 〈u′u′〉/u2
B

(d) Mean Reynolds stress 〈u′v′〉/u2
B

Figure 22: (a) Mean streamwise and vertical velocity and mean Reynolds stresses along vertical lines in the wake. (—) current
results, (- - - ) 4th order SD+WSM on hexahedral mesh by Lodato and Jameson 23, (◦) LDV experiments by Lyn et al. 46,47.
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H. NACA 0012 airfoil at 0◦ angle of attack, Re = 6 million, M = 0.15

In this section, the NACA 0012 airfoil is used to study the accuracy of the SA turbulence model coupled with FR.
The NACA 0012 is commonly used as a validation case for all turbulence models and a large database of results are
available at the NASA Turbulence Modeling Resource website. A 6,539 element quad/triangle mixed mesh is used
with a NACA 0012 airfoil of chord length 1.0 and a farfield boundary 20 chord lengths away. The results are compared
with CFL3D and experimental results from Gregory & O’Reilly, NASA R&M 3726, Jan 1970.

(a) Zoomed view of the mixed element mesh near the NACA 0012 air-
foil.

(b) X-momentum contours near the NACA 0012 airfoil

Figure 23: Turbulent flow past a NACA 0012 airfoil at Re = 6 million, M = 0.15, α = 0◦ using FR to recover 4th order
accurate DG method and the SA turbulence model.
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Figure 24: Pressure coefficient on the NACA 0012 airfoil at Re = 6 million, M = 0.15, α = 0◦ using FR to recover 4th
order accurate DG method and the SA turbulence model.
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V. Conclusion

In this work, we have presented a comprehensive description, verification and validation of the HiFiLES solver. In
its first version, HiFiLES offers to its users an implementation of the Flux Reconstruction methodology on unstruc-
tured 3D grids optimized for using GPUs or traditional MPI. The implementation has been verified via the method
of manufactured solutions. The code has been tested in some difficult Navier-Stokes and Large Eddy Simulation
problems with very satisfactory results.

The power of the Flux Reconstruction method is in its flexibility, efficiency and accuracy. Different high-order
schemes can be recovered by choosing a single parameter, allowing the numerical behavior to be fine-tuned. Despite
its advantages, FR is not yet as popular as other high-order methods, but we hope that, thanks to this work, the benefits
of the method will be communicated to a much wider audience. Though the use of explicit timestepping sets limits on
the CFL condition, the fact that HiFiLES can be run on high performance multi-GPU platforms may compensate for
this.

Despite considerable advances in the accuracy and versatility of subgrid-scale models, current industrial CFD
codes are restricted in their ability to perform LES of turbulent flows by the use of highly dissipative second-order
numerical schemes. Therefore, in order to advance the state of the art in industrial CFD, it is necessary to move to
high-order accurate numerical methods. The ESFR family of schemes are ideal for resolving turbulent flows due to
low numerical dissipation and high-order accurate representation of solution gradients at the small scales. Advanced
subgrid-scale models have been implemented in HiFiLES for all element types, enabling simulation of turbulent flows
over complex geometry. The development of the first open-source, high-order accurate solver for unstructured meshes
incorporating LES modeling capabilities represents a significant step towards tackling challenging compressible tur-
bulent flow problems of practical interest. Future work will include stabilization techniques, optimization of the ESFR
schemes for turbulence resolution, moving mesh capabilities, local time-stepping, multigrid convergence acceleration
and advanced turbulence modeling.
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