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In this paper, we present an unsteady aerodynamic and aeroacoustic optimization framework in which
algorithmic differentiation (AD) is applied to the open-source multi-physics solver SU2 to obtain design sen-
sitivities. An AD-based consistent discrete adjoint solver is developed which directly inherits the convergence
properties of the primal flow solver due to the differentiation of the entire nonlinear fixed-point iterator. In ad-
dition, a coupled CFD-CAA far-field noise prediction framework using a permeable surface Ffowcs Williams-
Hawkings approach is also developed. The resultant AD-based discrete adjoint solver is applied to both drag
and noise minimization problems. The results suggest that the unsteady adjoint information provided by this
AD-based discrete adjoint framework is accurate and robust, due to the algorithmic differentiation of the en-
tire design chain including the dynamic mesh movement routine and various turbulence model, as well as the
hybrid CFD-CAA model.

I. Introduction

The past several decades have seen significant progresses in the numerical methods for the design and optimization
of aerospace systems. Since the advent of adjoint-based methods,1, 2 for which the computational cost is independent
of the number of design variables, researchers have been able to tackle many large-scale and practical problems,
such as aerodynamic and aerostructural optimizations of complete aircraft configurations.3, 4 In most applications, the
underlying physical problem is considered to be in a steady state, as is evident from the rich body of literatures on the
topic of aerodynamic shape optimization with steady Euler and Reynolds-averaged Navier-Stokes equations (RANS).

However, many aerospace problems are unsteady in nature, such as active flow control, turbomachinery, aeroelastic
flutter, biologically-inspired flight and aeroacoustics. In comparison to the large strides made in its steady counter-
part, unsteady adjoint-based optimization has not received as much attention and methods available to address such
problem are consequently less mature. This has been primarily due to the need to store prohibitively large amount of
solution data required to solve the unsteady adjoint equation. Furthermore, many unsteady problems involve moving
aerodynamic surfaces. The need to accurately account for the requisite mesh movement in the governing equations
and the accompanying adjoint equations introduces additional difficulties.

Nevertheless, with the growth of computing power and the improvement of time-accurate numerical methods, has
led to more research effort in this area over the past decade. The renewed interest in reduction of aircraft noise –
an inherently unsteady phenomenon, due to the ever-stringent aviation noise regulations, also served as a necessary
catalyst. Rumpfkeil and Zingg developed a discrete adjoint formulation for unsteady aerodynamic shape optimization
and noise minimization based on 2D unsteady RANS (URANS),5 Mani and Mavriplis6 presented a discrete adjoint
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framework with deforming meshes for unsteady aerodynamic optimization of pitching airfoils. Nielsen and Diskin7

applied their discrete adjoint methodology with dynamic overset meshes to a large-scale complex helicopter configu-
ration. Most recently, Economon et al.8, 9 developed a continuous adjoint framework for unsteady aerodynamic and
aeroacoustic optimization.

Under the discrete framework, the effort of the adjoint implementation can be eased by the use of automatic
(or algorithmic) differentiation (AD), replacing the laborious and error-prone hand-differentiation of the discretized
equations. This however, is not the only advantage of AD-based adjoint. By construction, AD-based adjoints are
accurate to machine precision as they do not incur any roundoff or truncation error. In addition, the frozen turbulence
assumption typically used in many URANS-based adjoint formulations is eliminated, since the turbulence models
while not analytically differentiable are still algorithmically differentiable. The application of AD also leads to robust
and consistent adjoints in that the adjoint solver inherit the same convergence properties as the primal solver. Lastly, if
the operator overloading AD method is used with expression template technique in C++,10 the resultant discrete adjoint
framework offers extra flexibility – the adjoint solver can be automatically updated with primal code modification and
one can easily define any objective function from any state variable. This is an extremely attractive characteristic
for unsteady optimization problems in the multidisciplinary setting using a suite of multi-physics solvers where the
objective function may be different depending on the type of problems being addressed. AD-based discrete adjoint
has been applied to steady aerodynamic shape design problems by Bischof et al.11 and Gauger et al.12 More recently,
it was successfully applied by Nemeli et al.13 in the unsteady setting to the active flow control of an industry-relevant
high-lift configuration HIREX from Airbus.

In this paper, we present the development of an AD-based discrete adjoint framework on an open source multi-
physics suite SU214 for applications to unsteady aerodynamic and aeroacoustic optimization problems. The remainder
of the paper is organized as follows. In Section 2, the unsteady SU2 solver including a coupled CFD-CAA model using
a permeable surface Ffowcs Williams-Hawkings approach as well as the optimization framework based on discrete
adjoint and AD are presented. Optimization results are presented in Section 3 while conclusions and directions for
future activities are outlined in Section 4.

II. Unsteady Optimization Framework

II.A. Unsteady Multi-Physics Solver SU2

The Stanford University Unstructured (SU2) open source software suite was specifically developed for solving prob-
lems governed by partial differential equations (PDEs) and PDE-constraned optimization problems. It was developed
with the aerodynamic shape optimization problems in mind. Therefore the suite is centered around a RANS solver
capable of simulating compressible, turbulent flows commonly found in problems in aerospace engineering. The
governing equations are spatially discretized using the finite volume method, on unstructured meshes. A number of
convective fluxes discretization schemes have been implemented, such as the Jameson-Schimdt-Turkel (JST) scheme
and the upwind Roe scheme. The turbulence can be either modeled by the Spalart-Allmaras(S-A) model or the Menter
Shear Stress Transport (SST) Model. For unsteady flows, a dual time-stepping method can be used to obtain time-
accurate solutions. SU2 suite has recently seen extensions in the multi-disciplinary setting such as the inclusion of a
wave equation solver and a structural solver, making it well-suited for the unsteady multi-physics problems considered
in this work.

For the sake of conciseness, details regarding the formulations and implementations of the SU2 solver suite will
not be presented in this paper. Further details such as mesh deformation, dynamic mesh movement, multigrid imple-
mentations, validation and verification cases, as well as the continuous adjoint framework developed in tandem with
SU2, the readers are referred to the published work by Palacios et al.9, 14 of the SU2 team. In the next section we
direct the attention of the readers to a new coupled CFD-CAA far-field noise prediction framework developed for the
current work.

II.B. Coupled CFD-CAA Noise Prediction using a Permeable Surface Ffowcs Williams-Hawkings Approach

It is known for turbulent flows at low Mach numbers, direct computations of far-field noise is computationally pro-
hibitive.15 A common way to perform far-field noise prediction is then to adopt a hybrid CFD-CAA approach in
which the near-field noise source region is computed using a high-fidelity CFD model and then propagated to the
far-field using a computationally cheaper wave equation like CAA model. To that end, integral methods based on the
Kirchhoff or Ffowcs Williams-Hawkings (FW-H) formulations offer a more efficient approach for calculating acoustic
pressure at arbitrary observer locations by performing boundary integrals once the appropriate field data is known.
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Figure 1. Permeable control surface Γp separating the CFD and CAA domains

In this manner, the radiated noise from a complex sys-
tem can be calculated given the near-field flow data sup-
plied by a CFD solution. In this work, we develop a
coupled CFD-CAA far-field noise prediction framework
using a permeable surface Ffowcs Williams-Hawkings
approach.

The permeable FW-H formulation distinguishes it-
self from its original formulation in that it allows fluid
to flow through the discontinuity surface. Consequently,
one can define any arbitrary smooth surrounding surface
Γp around the aerodynamic body S where details of the
flow field are extracted and the noise source can be prop-
agated to the far-field. A schematic of such permeable
surface is shown on Figure 1. The fluid domain is there-
fore divided into two regions – the near-field CFD region
Ω1 and far-field CAA region Ω2. Further, we define the
shape of Γp by a function, f = 0, such that f < 0 inside
the control surface and f > 0 outside the control surface.

The key difference between this work and an earlier
work by Economon et al.8 in that in that work the per-
meable FW-H formulation in the wave equation form is
solved using a finite element method (FEM). In this work
we follow the boundary integral formulation presented

by Di Francescantonio,16 which rewrites the original FW-H into the permeable surface form as follows:

�2[c2(ρ−ρo)] =
∂

∂ t
[ρoUnδ ( f )]− ∂

∂xi
[L′i jn jδ ( f )]+

∂ 2Ti j

∂xi∂x j
. (1)

where

Ui = ui +[(ρ/ρo)−1](ui− vi) (2)
Li j = Pi j− poδi j +ρui(u j− v j), (3)

Ti j = P′i j +ρuiu j− c2(ρ−ρo)δi j. (4)

Note that ρ is the density, ui, j,k is the flow velocity, νi, j,k is the velocity of the control surface Γp. The subscript o
denotes ambient conditions while the superscript ′ denotes perturbation values. Pi j is the compressive stress tensor.

By convoluting with a free space Green’s function, a boundary integral form can be obtained. Following the
derivation of Farassat’s formulation 1A,17 time derivatives with respect to observer time can be moved inside of the
integrals and adjusted to be with respect to source time. This manipulation can offer some benefits during numerical
implementation. Lastly, by assuming a non-deforming surface which is far enough away from the source to contain
all non-linearities, the quadrupole volume terms can be removed, and the following boundary integral expression is
recovered for the pressure at an arbitrary observer location,

4π p′obs =
∫

Γp

[
ρo(U̇ini +Uiṅi)

r|1−Mr|2

]
ret

dΓp +
∫

Γp

[
ρoUiniK

r2|1−Mr|3

]
ret

dΓp +
1
c

∫
Γp

[
Ḟir̂i

r|1−Mr|2

]
ret

dΓp (5)

+
∫

Γp

[
Fir̂i−FiMi

r2|1−Mr|2

]
ret

dΓp +
1
c

∫
Γp

[
Fir̂iK

r2|1−Mr|3

]
ret

dΓp.

where K = Ṁir̂ir+Mrc−M2c and Fi = Li jn j. For a stationary permeable surface, all terms involving M or Mr become
zero and Equation 5 simplifies to:

4π p′obs =
∫

Γp

[
ρoU̇n

r

]
ret

dΓp +
1
c

∫
Γp

[
Ḟr

r

]
ret

dΓp +
∫

Γp

[
Fr

r2

]
ret

dΓp. (6)

Note that the AD-based discrete adjoint framework is particularly well suited for such multi-module computa-
tional design chain. Whereas the continuous adjoint framework requires cumbersome derivations of new adjoint
boundary conditions at the interface between the CFD and CAA domains, AD-based discrete adjoint simply differen-
tiates through the entire coupled CFD-CAA program algorithmically, giving adjoint information relating the far-field
noise objective function and the shape variables directly.
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II.C. AD-based Unsteady Discrete Adjoint Framework

The implementation of the discrete adjoint formulation in this work is eased by the use of automatic differentiation
(AD) a, eliminating the error-prone hand-differentiation of the discretized equations. AD was developed based on the
observation that any simulation code, regardless of its complexity is merely a sequence of elementary operations whose
differentiation rules are well known. Therefore, by successive applications of the chain-rule through the computer pro-
gram, it is possible to compute both the simulation output and its derivative with respect to prescribed design variables
simultaneously. A remarkable feature of AD, owing to its construction, is that it does not incur any truncation errors
compared to the traditional finite difference method. In particular, the derivatives are accurate to machine accuracy.
This is a very attractive characteristic of AD, since accurate evaluation of the gradient requires exact differentiation of
the fixed point iterator Gn as evidenced by Equations 20 and 21 in the following discussion.

The AD can be performed in the forward and reverse (adjoint) mode. The forward mode, albeit exact, requires
one evaluation for each component of the gradient vector. In contrast, the reverse mode is capable of computing the
entire gradient vector in one stroke of the forward and reverse simulation in time. For this reason, the reverse mode is
also referred to as the adjoint mode. The one-stroke gradient computation of the reverse mode AD is achieved at the
expense of high memory requirement due to the need to save all intermediate variables in an unsteady computation.
For this reason, wherever the reverse mode is used in this study, it is always implemented in conjunction with the
memory-saving checkpointing technique, which stores the flow solution at certain points in time during the forward
sweep as checkpoints. The flow solutions are then recomputed from these checkpoints in the reverse sweep for adjoint
variables. The maximum number of time steps allowable between the two consecutive checkpoints is dictated by the
memory available at each core. For long time computations, the many checkpoints required results in high hard disk
storage requirement and an increase in run time due to the need to recompute the flow solutions as well as reading and
writing of large volumes of data at each checkpoint. A good discussion of the two AD modes along with checkpointing
techniques can be found in.18, 19

Now we present our AD-based unsteady discrete adjoint framework using a simple system of PDEs as an example.
For the sake of brevity, influences of the mesh are omitted. Consider a system of semi-discretized PDEs as follows:

dU
dt

+R(U) = 0 (7)

where U is the spatially discretized state vector and R(U) is the discrete spatial residual vector. For the sake of illus-
tration, we assume the second-order backward difference is used for time discretization, which leads to the following
system of equations:

R∗(Un) =
3

2∆t
Un +R(Un)− 2

∆t
Un−1 +

1
2∆t

Un−2 = 0, n = 1, . . . ,N (8)

The application of dual-time stepping method then solves the following problem through a fictitious time τ to converge
to a steady state solution in (8):

dUn

dτ
+R∗(Un) = 0 (9)

Further assume the implicit Euler method is used to time march the above equation to steady state.

Un
p+1−Un

p +∆τR∗(Un
p+1) = 0, p = 1, . . . ,M (10)

The resultant nonlinear system can be linearized around Un
p to solve for the state Un

p+1

Un
p+1−Un

p +∆τ

[
R∗(Un

p)+
∂R∗

∂U

∣∣∣∣n
p
(Un

p+1−Un
p)

]
= 0, p = 1, . . . ,M (11)

This can be written in the form of a fixed-point iteration:

Un
p+1 = Gn(Un

p ,U
n−1,Un−2), p = 1, . . . ,M, n = 1, . . . ,N (12)

where Gn represents an iteration of the pseudo time stepping. Un−1 and Un−2 are the converged state vectors at time
iterations n−1 and n−2 respectively. The fixed point iteration converges to the numerical solution Un:

Un = Gn(Un,Un−2,Un−2), n = 1, . . . ,N (13)
aperformed using AD tool ADEPT10
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The discrete optimization problem can then be posed as:

min
α

J =
1
N

N

∑
n=1

Ĵ(Un,α) (14)

subject to Un = Gn(Un,Un−1,Un−2,α), n = 1, . . . ,N (15)

where α is the vector of design variables. One can express the Lagrangian associated with the above constrained
optimization problem as follows:

L =
1
N

N

∑
n=1

Ĵ(Un,α)−
N

∑
n=1

[(Ūn)T (Un−Gn(Un,Un−1,Un−2,α))] (16)

where Ūnis the adjoint state vector at time level n. The first order optimality conditions are given by:

∂L
∂Ūn = 0, n = 1, . . . ,N (State equations) (17)

∂L
∂Un = 0, n = 1, . . . ,N (Adjoint equations) (18)

∂L
∂α

= 0, (Control equation) (19)

From (18), the unsteady discrete adjoint equations can be derived in the fixed point form as:

Ūn
i+1 =

(
∂Gn

∂Un

)T

Ūn
i +

(
∂Gn+1

∂Un

)T

Ūn+1 +

(
∂Gn+2

∂Un

)T

Ūn+2 +
1
N

(
∂ Ĵn

∂Un

)T

, n = N, . . . ,1 (20)

where Ūn+1 and Ūn+2 are converged adjoint state vectors at time levels n+1 and n+2. The unsteady adjoint equations
above are solved backward in time. At each time level n we iterate through inner iteration i until we have converged to
Ūn. The highlighted terms here are evaluated in reverse mode AD at each iteration. To do so, reverse accumulation18

is performed at the beginning of each time level n to store the computational graph by evaluating G using converged
state solution Un. Then each inner iteration i proceeds by re-evaulating the tape using the updated adjoint vector Ūn

i ,
giving the highlighted terms. This continues within each time level n until the adjoint vector as converged to Ūn. The
sensitivity gradient can then be computed from the adjoint solutions:

dL
dα

=
N

∑
n=1

(
1
N

∂ Ĵn

∂α
+(Ūn)T ∂Gn

∂α

)
(21)

In this work, we apply the operator overloading AD method with expression template technique10 to the SU2

suite. This leads to additional flexitbilities in the resultant discrete adjoint framework – the adjoint solver can be
automatically updated with primal code modification and one can easily define any objective function from any state
variable. This is an extremely attractive characteristic for unsteady optimization problems in the multidisciplinary
setting using a suite of multi-physics solvers where the objective function may be different depending on the type of
problems being addressed.

III. Results

The SU2 suite has been differentiated using AD in both forward and reverse (adjoint) modes. The table below
demonstrates that the two unsteady gradients match well. Furthermore, checkpointing and reverse accumulation have
also been implemented for the reverse mode at each time iteration. In the next two subsections, we present optimization
results from drag and noise minimization problems involving dynamic mesh movement routine and various turbulence
model, as well as the hybrid CFD-CAA design chain – all of which can be cumbersome and error-tasks using the
continuous adjoint and hand-discrete approaches.

III.A. Lift-Constrained Drag Minimization of a Pitching Airfoil in Transonic Turbulent Flow

In this test case, we consider the lift-constrained drag minimization problem of an RAE2822 airfoil in transonic
(M∞ = 0.8) and turbulent (Re = 6.5× 106) flow regime, pitching about its quarter-chord point with a mean angle of
attack of 2.0 degrees, an amplitude of 3.0 degrees and a frequency of 251.3 rad/s.
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i Forward AD Reverse AD

1 1.04680400655973 1.04680400656003
2 0.469600562524447 0.469600562524395
3 0.246014397617865 0.246014397617779
4 0.128741852545148 0.128741852545171
5 1.0501672436756 1.0501672436755

Table 1. Comparison between the gradients forward-mode and reverse modes of AD

The mesh used is an un-structured, O-grid that wraps around the RAE 2822 airfoil. It has 22,842 elements in
total with 192 edges making up the airfoil boundary and 40 edges along the far field boundary. It is a hybrid-element
mesh with quadrilaterals in the region adjacent to the airfoil surface and triangles in the remaining portion of the
computational domain. The first grid point of the airfoil surface is at a distance of 10−5 chord, and the far field
boundary is located approximately one hundred chord lengths away from the airfoil. Characteristic-based far-field
boundary conditions are enforced on the far-field boundary, and a no-slip, adiabatic boundary condition is enforced on
the airfoil. The convective fluxes are computed using the Jameson-Schmidt-Turkel (JST) scheme while the turbulent
viscosity is calculated using the Menter Shear Stress Transport (SST) Model. A time step of 0.001 is used for the dual
time-stepping, resulting in 25 time steps per period of oscillation for a total of 8 periods.

A total of 38 Hicks-Henne bump functions are chosen as design variables and they are equally spaced along the
upper and lower surfaces of the airfoil (19 on each of the upper and lower surfaces). The objective function is defined
as the time-averaged drag within the periodic steady state:

JD = C̄d =
1

N−N∗
N

∑
n=N∗+1

Cn
d (22)

where Cn
d is the instantaneous drag coefficient at time level n. N is the total number of time steps and N∗ is the number

of time steps before entering the optimization window in which C̄d is to be minimized as shown on Figure 5. In this
case N∗ = 50 and the optimization window contains 6 periods of oscillation. The time-average lift C̄l is constrained in
the optimization so that C̄l

Optimized
= C̄l

RAE2822
= 0.4. A volume constraint is also imposed to ensure that the volume

of the optimized airfoil remains at least as large as the baseline RAE2822 airfoil.
The time-averaged drag is reduced by 38% after 24 CFD evaluations, while the mean lift is maintained at C̄l = 0.4,

as shown on Figure 2 (a). A comparison between the baseline RAE2822 and the new airfoil profiles is shown on
Figure 2 (b). Note that the curvature in the first 50% chord has been drastically reduced in the optimized airfoil,
since the airfoil is pitching at a positive mean angle of attack. The effect can be seen by comparing the Mach number
contour of the airfoils at their mean (Figure 3 (b) and Figure 4 (b)) and maximum (Figure 3 (c) and Figure 4 (c))
angles of attack – the shock strength on the upper surface has been significantly reduced, although the presence of the
mean lift and volume constraints prevents the shock from being fully removed. Note that at all three angles shown
on Figure 3 and Figure 4, the shock position has moved further downstream in the ‘improved airfoil’, reducing the
extent of shock-induced separation on the airfoil surface. Consequently, the new airfoil achieves lower drag within the
optimization window as shown on Figure 5. The time-averaged drag is reduced by 38% from the baseline value.

III.B. Lift-Constrained Drag and Noise Minimization of a Pitching Airfoil in Transonic Inviscid Flow

In this test case, we apply the AD-based discrete adjoint framework to the lift-constrained drag and noise minimiza-
tion problem of a pitching airfoil in transonic (M∞ = 0.796) inviscid flow. The baseline geometry considered is the
NACA64A010 airfoil pitching about its quarter-chord point with a mean angle of attack of 0 degrees, an amplitude of
1.01 degrees and a frequency of 251.3 rad/s.

An unstructured mesh is constructed around the baseline airfoil. It consists of 16,937 triangular elements, 8,606
nodes, 200 edges along the airfoil, and 75 edges along the far-field boundary. In both drag and noise minimization
cases presented here, the unsteady simulations of the pitching airfoil are performed using a second-order accurate dual
time-stepping scheme with 25 time steps per period for a total of 10 periods of forced pitching.

A total of 50 Hicks-Henne bump functions are chosen as design variables and they are equally spaced along the
upper and lower surfaces of the airfoil (25 on each of the upper and lower surfaces).

For the drag minimization problem, the objective function is defined by Equation 22. For the noise-minimization
problem, the objective function is defined as the time-averaged pressure fluctuation within the periodic steady state at
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Flow Solver Evaluation
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(a) Optimization convergence history of time-averaged drage and lift
coefficients.

x/c

y
/c
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0.05

0

0.05

0.1

RAE2822

Optimized

(b) Comparison between the baseline RAE2822 airfoil and the opti-
mized airfoil

Figure 2. Optimization convergence history and the comparison between the baseline RAE2822 airfoil and the optimized airfoil

(a) α =−1◦ (b) α = 2◦ (c) α = 5◦

Figure 3. Mach number contour of the baseline RAE2822 airfoil at various time instances over one period

(a) α =−1◦ (b) α = 2◦ (c) α = 5◦

Figure 4. Mach number contour of the optimized airfoil at various time instances over one period

an observer location:

JN =
1

N−N∗
N

∑
n=N∗+1

(pn
obs− p∞)

2 (23)
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Figure 5. Time history of lift and drag coefficients of the RAE2822 and the optimized airfoil. The horizontal lines denote time-averaged values

where pn
obs is the instantaneous pressure at time level n computed at an observer location and p∞ is the free-stream

pressure. The observation point is placed 10c below the trailing edge of the airfoil. N is the total number of time steps
and N∗ is the number of time steps before entering the optimization window in which the magnitude of the pressure
fluctuation is to be minimized. In this case N∗ = 50 and the optimization window contains 8 periods of pressure
fluctuation measured at the observation point.

For both drag and noise minimization cases, the time-average lift C̄l is constrained in the optimization so that
C̄l

Optimized
= C̄l

NACA64A010
= 0. A volume constraint is also imposed to ensure that the volume of the optimized airfoil

remains at least as large as the baseline NACA64A010 airfoil.
A lift-constrained drag minimization is first performed on the baseline airfoil. The time-averaged drag is reduced

by 59% after 16 CFD evaluations, while the mean lift is maintained at C̄l = 0, as shown on Figure 6 (a). A comparison
of the time histories of Cd between the baseline and the optimzed airfoil is shown on Figure 6 (b). The drag is greatly
reduced over the entire optimization window.

Next, a lift-constrained noise minimization is performed on the baseline airfoil. The time-averaged pressure fluc-
tuation is reduced by 45.6% after 16 CFD evaluations, while the mean lift is maintained at C̄l = 0, as shown on
Figure 7 (a). A comparison of the time histories of p′ = pobs− p∞ between the baseline and the optimzed airfoil
is shown on Figure 7 (b). It can be seen that the magnitude of pressure fluctuation is significantly reduced over the
optimization window for the optimized design.

Figure 8 compares the two optimal airfoils with the baseline. The drag-minimized airfoil is thinner than the
baseline airfoil around the mid-chord. This helps removing the shock on both surfaces as the airfoil pitches therefore
reducing the wave drag. Its profile also remains symmetrical as the baseline NACA64A010 since the airfoil is pitching
about the horizontal axis and the zero mean lift constraint is imposed. The noise-minimized airfoil is much thicker than
the baseline airfoil, featurings a significant bulge on the pressure side. This may have been the result of optimizing the
pressure fluctuation at a single observation point – the optimizer deforms the shape so as to deflect the pressure waves
away from the prescribed observation point at the cost of increased drag.

Comparing the performance of the two optimal designs in terms of both drag and noise objectives on Table 8, it
can be seen that the time-averaged noise objective JN is slightly reduced from its baseline value in the drag-minimized
design. However, the time-averaged drag is more than 2 orders of magnitudes higher than its baseline value in the
noise-minimized design, due to the enlarged airfoil profile and high curvatures which lead to strong shocks at such
transonic flow condition. In a similar study conducted by Rumpfkeil and Zingg,5 the reverse trend is noted – the
drag-minimized airfoil results in a noise objective value that is twice as high as the noise-minimized one. While their
study was performed for a blunt trailing edge in the subsonic flow regime, it is apparent from their work and this test
case that the drag and noise can be two competing objectives.

It is clear from the study of this simple test case that drag and noise minimizations do not lead to the same optimal
shape. Moreover, if conducted in parallel, they may not even result in the similar optimal performance in this two-
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objective problem in that a noise-minimized design may lead to unsatisfactory rise in drag. This serves to illustrate an
important point that aeroacoustic optimization cannot be an ‘after-thought’ – it must be included in the initial design
process in order to minimize its impact on other aerodynamic performances. While design and optimization using
steady aerodynamics for lift and drag is still the industry standard today, to reduce aerodynamic noise – an inherently
unsteady phenomenon, efficient unsteady simulation and design tools are of paramount importance. To that end, the
AD-based discrete adjoint framework developed on the basis of the SU2 multi-physics software suite offers an accurate
and robust way to tackle challenges arising from the unsteady aeronautical design problems.

(a) Optimization convergence history of time-averaged drage and lift
coefficients.

Time(s)
C

d
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0.002
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(b) Time history of Cd for the baseline airfoil and the optimized airfoil

Figure 6. Lift-constrained drag minimization result of a Pitching Airfoil in Transonic Inviscid Flow
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(a) Optimization convergence history of time-averaged pressure fluc-
tuation and lift coefficient.
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(b) Time history of p′ for the baseline airfoil and the optimized airfoil

Figure 7. Lift-constrained noise minimization result of a Pitching Airfoil in Transonic Inviscid Flow

IV. Conclusions and Future Work

In this paper, we present an unsteady aerodynamic and aeroacoustic optimization framework in which algorithmic
differentiation (AD) is applied to the open-source multi-physics solver SU2 to obtain design sensitivities. An AD-

9 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 E

co
no

m
on

 o
n 

Ju
ly

 1
5,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

33
55

 



NACA 64A010

Drag Minimized

Noise Minimized

Figure 8. Comparison between NACA64A010, drag-minimized and noise-minimized airfoils

NACA64A010 Drag Minimized Noise Minimized

JD 2.39×10−3 9.75×10−4 1.57×10−1

JN 2.13×10−3 2.03×10−3 1.16×10−3

Table 2. Comparison between drag minimization and noise minimization results

based consistent discrete adjoint solver is developed which directly inherits the convergence properties of the primal
flow solver due to the differentiation of the entire nonlinear fixed-point iterator. This includes the differentiation of the
dynamic mesh movement routine and various turbulence model, as well as the hybrid CFD-CAA design chain – all of
which cumbersome and error-tasks using the continuous adjoint and hand-discrete approaches.

The resultant AD-based discrete adjoint solver is applied to two test cases – lift-constrained drag minimization of a
pitching airfoil in transonic turbulent flow and the lift-constrained drag and noise minimization problem of a pitching
airfoil in transonic flow.

The results reveal that the unsteady adjoint information provided by this AD-based discrete adjoint framework is
accurate and robust. The drag and noise objective values are significantly reduced in both cases. The second test case
shows that drag and noise minimizations do not yield the same optimal shape and the two objectives may even be
competing. Depending on the definition of the far-field noise observation point or plane, it is possible for a noise-
minimized airfoil to result in unacceptable rise in drag. This highlights the need for efficient simulation and design
tools tailored for unsteady problems in order to take both aerodynamic and acoustic performances into account early
in the design process.

In the near future, we plan to apply this methology to problems with more complex geometries such as a lift-
constrained noise minimization for a multi-element airfoil in landing configurations. Since the URANS solver has been
differentiated with AD, for low-speed turbulent problems one may simply switch to URANS for the flow computation
of the hybrid CFD-CAA solver in the noise source region. The directivity of noise will also be controlled by measuring
the pressure fluctuation at a far-field plane or at multiple radial locations instead of at a single location.

Furthermore, with parallel development efforts from various SU2 contributors in other disciplines, we intend to
extend this framework to address other inherently unsteady multi-physics design problems, such as aeroelastic flutter
and reacting flows.

10 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 E

co
no

m
on

 o
n 

Ju
ly

 1
5,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

33
55

 



V. Acknowledgement

The first author would like to acknowledge the partial funding by the Natural Science and Engineering Research
Council of Canada (NSERC). The authors would also like to gratefully acknowledge Dr. Markus Hillenbrand of
the RHRK high performance computing center for his support in procuring essential computational resources via the
‘Elwetritsch’ high performance cluster at the TU Kasierslautern.

References
1Pironneau, O. On optimum design in fluid mechanics. Journal ofFluid Mechanics 64, 97–110 (1974).
2Jameson, A. Aerodynamic design via control theory. Journal of Scientific Computing 3, 233–260 (1988).
3Kenway, G. K. W. and Martins, J. R. R. A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal

of Aircraft 51 (1), 144–160 (2014).
4Lyu, Z. and Martins, J. R. R. A. Aerodynamic design optimization studies of a blended-wing-body aicraft. Journal of Aircraft 51 (5),

1604–1617 (2014).
5Rumpfkeil, M. P. and Zingg, D. W. A hybrid algorithm for far-field noise minimization. Computers and Fluids 39(9), 1516–1528 (2010).
6Mani, K. and Mavriplis, D. J. Unsteady discrete adjoint formulation for two-dimensional flow problems with deforming meshes. AIAA

Journal 46(6), 1351–1364 (2008).
7Nielsen, E. J. and Diskin, B. Discret adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids. AIAA Paper,

2012-0554 (2012).
8Economon, T. D., Palacios, F., and Alonso, J. J., A coupled-adjoint method for aerodynamic and aeroacoustic optimization. AIAA Paper

2012-5598, (2012).
9Economon, T. D., Palacios, F., and Alonso, J. J., An unsteady continuous adjoint approach for aerodynamic design on dynamic meshes.

AIAA Paper 2014-2300, (2014).
10Hogan, R. Fast reverse-mode automatic differentiation using expression templates in C++. Transactions on Mathematical Software 40 (26),

1–16 (2014).
11Hovland, P., Mohammadi, B., and Bischof, C., Automatic differentiation and Navier-Stokes computations. Computation Methods for

Optimal Design and Control, 265–284 (1998).
12Gauger, N. R., Walther, A., Moldenhauer, C., and Widhalm, M., Automatic differentiation of an entire design chain for aerodynamic shape

optimization. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 96, 454–461 (2007).
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