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This paper describes a new framework for Fluid-Structure Interaction (FSI) modelling
within the open-source code SU2. SU2 has been developed to solve complex, multi-physics
problems described by Partial Differential Equations (PDEs), with an emphasis on prob-
lems involving aerodynamic shape optimization. Due to its modularity, the code provides
an appropriate infrastructure for the solution of physical problems in several disciplines.
This work provides SU2 with new tools that expand its capabilities in the fields of struc-
tural analysis and FSI. The focus will be on geometrically-nonlinear deformable solids in
low-speed external flows.

A Finite Element (FE) structural solver, able to deal with geometrical and material
non-linearities in a static and a dynamic setting, has been built within the framework
of SU2 alongside the existing solvers. Following the original object-oriented architecture
in C++, a new structure compliant with the CFD solver has been developed. These new
features will serve as a basis for future developments of FE-based strategies for the solution
of PDEs. The structural solver has been coupled with the original fluid solver in SU2 using
a partitioned approach. The structure of the code was fully recast to allow analysis across
multiple zones and physical problems, currently limited to problems involving fluid and
structural analysis. Both loosely- and strongly-coupled strategies are available for the
solution of the coupled FSI problem.

Finally, the validity of the implementations is assessed by studying the behavior of
a rigid square with a flexible cantilever at low Reynolds number. The results obtained
demonstrate the capabilities of these new developments and further address the physics
behind this benchmark problem.
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Nomenclature

ρ Density
Ω Domain
Γ Boundary
n Vector normal to a surface

Fluid variables
v Velocity
E Total energy per unit mass
p Pressure
µf Fluid viscosity
Cp Specific heat
¯̄τ Viscous stress tensor
U Vector of conservative variables
Fc Vector of convective fluxes
Fv Vector of viscous fluxes
λf Fluid tractions over the FSI interface

Mesh variables
uΩ Nodal displacements on the fluid mesh
u̇Ω Nodal velocities on the fluid mesh
Km Stiffness matrix of the mesh deformation

problem

Structural variables
E Young’s modulus
ν Poisson ratio
λ, µ Lame constants
M Mass matrix
K Stiffness matrix
Kc Constitutive term of the stiffness matrix
Ks Stress term of the stiffness matrix
Fe Vector of external forces
T Vector of internal equivalent nodal forces
N Element shape functions
B Matrix of shape function gradients
u Nodal displacements
u̇ Nodal velocities
ü Nodal accelerations

F Deformation gradient
S Second Piola-Kirchhoff stress tensor
D Constitutive matrix
σ Cauchy stress tensor
b Left Cauchy-Green deformation tensor
J Jacobian of the deformation gradient
β, γ Newmark method parameters
αm, αf Generalized-α method parameters
Ψ Free energy function
λs Tractions applied on the structural

side of the FSI interface

Coupled problem
F (·) Dirichlet-to-Neumann fluid operator
S (·) Dirichlet-to-Neumann structural operator
ω Aitken’s dynamic relaxation parameter
Ru Residual on the FSI interface
ε Tolerance criterion

Interpolation problem
H Transformation matrix
Φ(x) Radial basis function
x Spatial coordinates
r Radius

Subscript
f Fluid
s Structure
a, b Nodes of the FE discretization
e Essential boundary condition
n Natural boundary condition
i FSI interface

Superscript
n Current iteration
n− 1 Previous iteration
t+ ∆t Current time step
t Previous time step

I. Introduction

Computational Fluid-Structure Interaction with complex flow and/or structural behavior is an area of
active research in diverse subjects such as computational aeroelasticity,1–5 biomechanics,6,7 and turboma-
chinery.8,9 Each particular problem has its own requirements in terms of the physics involved, and as a result
several methods have arisen specifically oriented to solve them.10–19 Given the complex physics involved in
the solution of computational FSI, where strong non-linearities may occur both in each domain separately
and in the interaction itself, the performance of the solvers employed in highly parallel environments becomes
a key issue, specially when addressing large problems. Therefore, both accuracy and efficiency in the solvers
become unavoidable requirements for the computational study of this problem.

It has been found worthy to explore the development and employment of new tools that can give adequate
response to these requirements from a general point of view. In this sense, the open-source SU2 software
suite20,21 sets a very appropriate starting point for the development of a new, integrated Fluid-Structure
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Interaction solver. SU2 consists of a set of tools that have been developed from the ground up to solve
complex multiphysics Partial Differential Equation-based (PDE) problems, using unstructured meshes while
including shape design and optimization procedures. The code is highly encapsulated and composed of a set
of C++ routines organized in a modular way, thus allowing for the integration of new implementations in a
structured and efficient way.

Although originally developed as a Computational Fluid Dynamics (CFD) tool for treating aerodynamic
shape optimization problems in compressible flows, the code is now being used for analysis and design
purposes in several disciplines such as chemical, mechanical, industrial and naval engineering.22 Economon
et al.22 have recently summarized the approach of the SU2 team to code optimization, in order to improve
the performance and scalability of the suite by executing the CFD solver on highly parallel architectures,
identifying some of the typical bottlenecks and proposing algorithms suitable for large-scale simulations.
This ability to handle large-scale problems, together with the modularity and open-source nature of the
code, make SU2 a unique platform for the implementation of an efficient and robust computational FSI
solver. This paper presents the current status of that project.

This paper is organized as follows. Section II summarizes the governing equations and the interface
coupling condition, and assesses the solution methods that have been considered for the implementation.
Section III describes the structure of the code. The results obtained in the study of a cantilever beam
undergoing large deformations under the action of a vortical flow are presented in section IV, demonstrating
the potential of the solver to become a general tool in FSI. Finally, section V summarizes the contributions
and main findings of this work.

II. Background

From a physical point of view, the Fluid-Structure Interaction problem may be described as the analysis
of two different fields (fluid and structure) governed by their own constitutive equations, and interacting
with each other over a common interface. The fluid conservative variables are (ρf , ρv, ρE), being ρf the
density, v the velocity and E the energy, while in the solid domain, the variables are the displacements u and
velocities u̇ with respect to an inertial observer. In order for the problem to be fully coupled (Fig. 1), the
fluid pressures pΓ and viscous stresses ¯̄τΓ from the fluid field are applied onto the structure at the common
interface, resulting in structural displacements and velocities on the common boundary (uΓ, u̇Γ) that modify
the external shape of the structure, thus affecting the fluid field.

Fluid

ρf ,v, E

Structure

u, u̇

pΓ, ¯̄τΓ

uΓ, u̇Γ

Figure 1. Fluid-Structure Interaction problem

In numerical solutions for unsteady flows with dynamic meshes, it is necessary to introduce a third
field in the problem, the computational grid of the fluid, where the variables are the displacements uΩ and
velocities u̇Ω of its nodes. Moreover, it is needed to define the strategy to be adopted in order to couple the
computational fluid and structural solvers.

There are two main coupling architectures.23 On the one hand, it is possible to adopt a monolithic
approach, thus solving simultaneously the fluid and structural equations while imposing the interface condi-
tions. This approach is robust and accurate, and has been proven to be more efficient in some applications
in biomechanics.15,24 Nevertheless, it requires the development of highly specialized code, a challenging task
that in most cases leads to solvers that, according to Piperno et al.,25 are not optimal.

A partitioned approach, on the other hand, permits the employment of an adequate solver for each
subproblem,26 and is simpler and easier to implement. This will be the procedure adopted in this work, as
we are interested in maintaining the modularity of SU2 while developing a very specific structural solver
able to deal with problems involving very large deformations and complex material behavior. Therefore, it
has been necessary to assess the different approaches for temporal integration and spatial interpolation of
the fields on the interface in order to guarantee the stability and accuracy of the scheme. The adoption
of a partitioned approach introduces a new field into the problem, which is the interface, upon which the
coupling conditions will be applied (Fig. 2).
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Fluid

ρf ,v, E

Structure

u, u̇

Interface

pΓ, ¯̄τΓ,uΓ, u̇Γ

Mesh

uΩ, u̇Ω

pΓ, ¯̄τΓ

uΓ, u̇Γ

Figure 2. Partitioned Fluid-Structure Interaction problem

II.A. Fluid domain

The behavior of a viscous, compressible, Newtonian flow is governed by the Navier-Stokes equations, assuming
an Eulerian description of the motion. In FSI problems, there are moving boundaries in the domain which
make it necessary to account for the displacements on the mesh. Therefore, the Navier-Stokes equations have
been reformulated in an Arbitrary Lagrangian-Eulerian (ALE) framework.20,21,27,28 Defining a conservative
variable U = (ρf , ρv, ρE), it is possible to write the PDE system as20

∂U

∂t
+∇ · Fc

ALE(U) = ∇ · Fv(U) in Ωf × [0, t] (1)

where Fc
ALE(U) is the vector of convective fluxes and Fv(U) corresponds to the viscous fluxes, defined by

Fc
ALE(U) =

 ρf (v − u̇Ω)

ρfv ⊗ (v − u̇Ω) + ¯̄Ip

ρf (v − u̇Ω)E + pv

 , Fv(U) =

 0

¯̄τ

¯̄τ · v + µfCp∇T

 (2)

being ρf the fluid density, v = (v1, v2, v3) the vector of flow velocities in a Cartesian coordinate system, E
the total energy of the flow per unit mass, ¯̄τ the viscous stress tensor, µf the fluid viscosity, Cp the specific
heat, T the temperature and u̇Ω the velocities of the nodes of the grid.

In order to define the solution of U, it is necessary to prescribe the boundary conditions on both the
external and internal boundaries. For the external boundaries, it is possible to define either free-stream
boundary conditions (far-field or near-field) or characteristic-based inlet or outlet conditions. For the interface
boundary Γ, we will have to apply wall boundary conditions. As the interface is moving, the velocity of
the viscous flow on the surface has to be equal to the velocity of the surface. Moreover, we can also define
equilibrium of the tractions on the interface on the fluid side. Thus, we have{

vf = u̇Γi
on Γf,i

−pnf + ¯̄τ fnf = λf on Γf,i
(3)

where vf is the velocity of the fluid on the interface, u̇Γi the velocity of the mesh nodes on the interface and
nf the dimensional, fluid normal outwards to the surface. A Dirichlet-to-Neumann non-linear operator for
the fluid (F ) may be defined,6,26 which associates the fluid tractions λf to the fluid displacements on the
interface uΓf

, as
λf = F (uΓf

) on Γf,i (4)

II.B. Structural domain

From the structural point of view, the continuum behavior is addressed by means of a Lagrangian description.
The computational mesh follows the material particles,28 thus allowing for tracking displacements, velocities
and accelerations of the structure on the nodes. In the context of geometrically non-linear problems, the
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governing equations are written as29

ρs
∂2u

∂t2
= ∇(F · S) + ρsf in Ωs × [0, t] (5)

where ρs is the structural density, u are the displacements of the solid, F the material deformation gradient,
S the second Piola-Kirchhoff stress tensor and f the volume forces on the structural domain. In order to fully
define the structural problem, it is also necessary to impose boundary conditions on the interface degrees of
freedom, which may be classified30 into essential (e) and natural (n) boundary conditions, where the former
impose the solution us,e on a set of nodes of the interface and the latter apply tractions λs,n on the boundary.
The boundary conditions for the problem can be written as{

us = us,e on Γs,e
¯̄σsns = λs,n on Γs,n

(6)

where ns is the dimensional, structural normal outwards to the surface. Analogous to the fluid domain, it is
possible to define a Dirichlet-to-Neumann non-linear operator for the structural domain (S ), such that6,26

λs = S (uΓs) on Γs,n (7)

As it will be further explained in the next section, it is interesting to define now the inverse operator S −1

as a Neumann-to-Dirichlet operator which, given the tractions λs maps the displacements us on Γi,

uΓs
= S −1(λs) on Γs,n (8)

II.C. Coupling conditions

In order to close the equations defined in sections II.A and II.B, it is necessary to appropriately define the
interface conditions.1,6, 26 Continuity is imposed over the common interface as

uf = us = uΓ (9)

On the other hand, the imposition of equilibrium conditions on Γ× [0, t] yields26

λf + λs = 0 (10)

Having λf been defined on Eq. 4 and λs defined on Eq. 7. Combining equations 9 and 10, the problem can
be rewritten as a Steklov-Poincaré equation6,26

F (uΓ) + S (uΓ) = 0 (11)

This definition allows us to rewrite Eq. 11 as a fixed-point equation26 using the definition in Eq. 8

S −1(−F (uΓ)) = uΓ (12)

For time-marching, the enforcement of the previous conditions will be addressed in the next section, as the
requisites are different depending on the approach adopted.

II.D. Time coupling

Once adopted a partitioned approach, two possible strategies are available for the integration in time of the
coupled problem. On the one hand, it is possible to adopt a loosely-coupled (staggered) procedure, which
is an explicit approach consisting of sequentially solving the fluid and structure problems, advancing the
solvers in time without enforcing the coupling conditions at the end of each time step. On the other hand,
strongly-coupled strategies are also solved sequentially, but they require both solvers to meet the coupling
conditions defined in section II.C in an implicit way, at the end of every single time step. Both of them will
be briefly described in this section.

The loosely-coupled approach is the most elementary technique to solve the coupled problem, and due to
its simple and modular implementation, it is widely used in Fluid-Structure Interaction problems, especially
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in the field of computational aeroelasticity.3,11,25,31 The simplest partitioned algorithm is the Conventional
Serial Staggered11 (CSS) procedure, which consists of one single solution of the Dirichlet-to-Neumann op-
erator F (u) and the Neumann-to-Dirichlet inverse operator S −1(λ) per time step. This is a collocation
method, that is, each subfield has to be evaluated at the end of the same time window.25,26

while t < T do

Fluid solver: λt+∆t
f,Γ (pΓ, ¯̄τΓ) = F (utΓ)

Structural solver: ut+∆t
Γ = S −1(−λt+∆t

f,Γ )

t← t+ ∆t;

end
Algorithm 1. Conventional Serial Staggered (CSS) method

As a result, kinematic continuity condition is not enforced, as the fluid is computed for t+ ∆t with the
position of the interface on time t. This results on a first order energy-accurate scheme,25 regardless of the
order of each subsolver. As a result of this lack of energy equilibrium, spurious energy is generated along
the simulation, which may eventually result in large discrepancies in the prediction of pressures and viscous
stresses on the interface.32 It is possible to improve the accuracy of a staggered scheme by using a predictor
for the structural displacements at the beginning of the simulation,25 increasing the order of the scheme.
The resulting algorithm is the so-called Generalized Serial Staggered (GSS).25,26

while t < T do

Predictor: ũt+∆t
Γ = Pi(u

t
Γ)

Fluid solver: λt+∆t
f,Γ (pΓ, ¯̄τΓ) = F (ũt+∆t

Γ )

Structural solver: ut+∆t
Γ = S −1(−λt+∆t

f,Γ )

t← t+ ∆t;

end
Algorithm 2. Generalized Serial Staggered (GSS) method

Some instabilities and inaccuracies are inherent to loosely-coupled schemes and have been reported
throughout the literature. In particular, the stability of these schemes is highly dependent on the den-
sity ratio ρs/ρf and the compressibility of the flow.26,33,34 Incompressible flows combined with low density
ratios generally require strongly coupled solvers due to the added-mass effect.33,35 Moreover, thin-walled
structures which undergo large deformations are also very sensitive to the quality of the solution scheme.34

Some interesting attempts have been made to develop a higher order staggered scheme, as for example the
Combined Interface Boundary Conditions (CIBC) method developed by Jaiman et. al,32 or the works of
Dettmer and Peric on a second-order staggered algorithm.33

In order to prevent the instabilities derived from the adoption of explicit schemes, it is common to
adopt a strongly-coupled, implicit scheme.12,26,34,36–39 These methods intend to eliminate the energy errors
resulting of not enforcing the coupling conditions on the coupled time integration by imposing the conditions
in section II.C at the end of each time step. One of the most extended strongly-coupled methods is the Block
Gauss-Seidel (BGS) method, which implies the iterative solution of fluid and structural subsolvers within a
time step until a tolerance criterion ε is met in the residual Ru = ‖un+1

Γ − unΓ‖ < ε.
Several authors have reported slow convergence or even divergence when the Fluid-Structure Interaction

is strong, due for example to low density ratios, incompressible flows or large structural deformations.34,38 Le
Tallec and Mouro12 proved that a fixed point algorithm without relaxation diverges for large deformable struc-
tures or small time steps. As a result, and in order to improve the convergence of the scheme, higher order
displacement predictors have been used, combined with the employment of relaxation techniques.26,34,37,39

The resultant procedure is described in algorithm 3.
In order to obtain the fastest convergence as possible, it is necessary to appropriately define the relaxation

parameter ωn. Küttler and Wall37 carry out an interesting review on the possible values of ωn. As the
simplest option, a fixed relaxation parameter can prevent the computation from diverging, as long as it is
small enough. Nevertheless, this choice generally results in a large number of iterations. Also, it is mentioned
in the same reference that the optimal value for a fixed ωn is problem-dependent. A simple and efficient
option, as reported in several papers34,37,39 is to use the dynamic Aitken’s relaxation parameter.40 If we
define
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∆unΓ = ũnΓ − un−1
Γ

∆un+1
Γ = ũn+1

Γ − unΓ
(13)

The Aitken’s dynamic parameter is obtained as37

ωn = −ωn−1 (∆unΓ)T (∆un+1
Γ −∆unΓ)

|∆un+1
Γ −∆unΓ|2

(14)

As the information from iterations n and n − 1 is needed, it has been suggested37,40 to use the last
relaxation parameter from the previous time step for the first iteration in a new time step, upper constrained
with a ωmax to avoid using a value too large,

t+∆tω1 = min(tωn, ωmax) (15)

where t+∆tω1 is the initial relaxation parameter for the new time step and tωn is the value of the relaxation
parameter in the last iteration of the previous time step .This procedure is simple to implement and provides
good results in terms of accuracy and robustness.34,37,39

while t < T do
n← 0;
Predictor: ũnΓ = Pi(u

t
Γ);

while n < nmax do

Fluid solver: λt+∆t
f,Γ (pΓ, ¯̄τΓ) = F (ũnΓ)

Structural solver: un+1
Γ = S −1(−λt+∆t

f,Γ )

Relaxation: ũn+1
Γ = (1− ωn)ũnΓ + ωnun+1

Γ

if ‖ũn+1
Γ − ũnΓ‖ < ε then

break
else

n← n+ 1
end

end

ut+∆t
Γ ← ũn+1

Γ

t← t+ ∆t
end

Algorithm 3. Block Gauss-Seidel algorithm with predictor and relaxation parameter

Finally, and particularly for strongly non-linear problems, Newton-Raphson methods to obtain the cou-
pled solution14,36 have been investigated. They require the computation or estimation of the partial deriva-
tives of the fluid and structural root problems with respect to each domain’s own variables, and also with
respect the crossed variables.36 This procedure is computationally expensive, and as a result, based on the
root equation derived from Eq. 12, the Interface Newton-Krylov methods have been developed.34,38 In order
to avoid the computation of the exact Jacobian, which is quite time consuming due to non-linearities on
the interface,34 some alternatives have been proposed to compute the matrix-vector product of the Jacobian
with an arbitrary vector, as for example finite-difference methods34,41 or reduced-order models.38,42 Even
though the Newton-Krylov method is expected to have a lesser number of iterations per time step due to
its higher order of convergence, the higher cost of each iteration results in comparable overall computational
times with the Block Gauss-Seidel method with Aitken’s relaxation.34,37

II.E. Space coupling

When a partitioned approach is adopted in Fluid-Structure Interaction problems, one also needs to appro-
priately transfer the coupling conditions defined in II.C between the fluid and structural solvers. Due to the
noticeable differences on the physical behavior of both fluid and structure fields, it seems unreasonable to
subordinate the discretization of one of the fields to the discretization of the other, particularly if there are
local effects on one of them. There is a substantial body of literature to address the problem of coupling
two non-matching meshes.1,13,43–47 Indeed, the interpolation of fields on the interface may compromise
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the accuracy of the whole simulation if it is not done appropriately.44 In general, the information transfer
between solvers has to meet strict criteria regarding conservativeness of momentum and energy; at the same
time it has to aim at obtaining an efficient solution from the numerical point of view.1 In this sense, both
accuracy and robustness must be achieved in the transfer scheme, which at the same time has to be efficient
(maximum accuracy with minimum cost) and simple to implement.44,45

It is a common approach in the literature to apply the principle of virtual work1,44,45,48 to define a
conservative transfer scheme. Brown49 and Farhat1 have introduced projection methods that apply the
conservation of virtual work to the problem of transferring load and deformations in FSI problems on non-
matching meshes. By requiring the interpolation method to conserve virtual work across the displacements
and forces on the two meshes, the resulting distributions are physically consistent and result in the same
integrated forces. Following their work, Equation (16) gives an expression for the virtual work performed by
the forces applied to the structure F, moved through a virtual nodal displacement δuΓ,s.

δWE = FT · δuΓ,s (16)

The virtual work must equal the similar expression using the forces of the fluid solution and the virtual
displacements of the fluid mesh as shown in Equation (17). For the common case of a finer fluid mesh we
have a set of distributed forces λf including both surface pressure and traction.

δWE =

∫
Γ,f

(−p~nf + ¯̄τ f~nf )T · δuΓ,fdSf (17)

where ~nf is the unit normal on the fluid side of the problem and Sf the curvilinear coordinate along the
fluid interface. Equating Equations (16) and (17):

FT · δuΓ,s =

∫
Γ,f

(−p~nf + ¯̄τ f~nf )T · δuΓ,fdSf (18)

In the discrete interface, the displacements on the fluid side may be mapped from the displacements on
the structural side using a matrix H that will need to be defined for each problem and method used, thus
resulting uf = Hus. According to the previously described principle of virtual work, the tractions at the
structural interface may be mapped from the fluid domain as λs = HTλf . Therefore, it is possible to define
a full space-coupling scheme that would meet the criteria of conservation of work just by adequately defining
a transformation matrix H. Global conservation of forces can also be achieved just by imposing that the
rowsum of H is equal to one.45

Projection methods are based on the idea of orthogonally projecting the information from certain defined
points on the source mesh onto the target mesh. Two widely extended projection methods are the node
projection method1 and the quadrature projection method.43 Projection methods are simple to implement,
have been demonstrated to be strictly conservative, and have already been quite successfully used in relevant
applications, as for example by Breuer et al.50 analysing an elastic appendix downwind a circular cylinder
using LES.

Projection methods may be included within a larger group of interpolation methods to obtain the matrix
H available in the literature: the weighted residual formulations. Jiao and Heath51 define the problem as
one in which the objective is to pass a function g(xd) defined at any point xd in the donor mesh and obtain a
function h(xt) defined at any point in the target mesh xt, in which both g(xd) and h(xt) are defined as linear
combinations of a set of discrete values at the nodes multiplied by a set of shape functions. The objective is
to minimize in a certain way the residual h− g.51

As drawbacks of these methods, Breuer et al.50 point out the occurrence of non-physical distribution
of the loads when the structural mesh is finer than the fluid mesh, and Jaiman et al.47,52,53 refer to some
problems related with the accuracy and repeated data transfer of these methods. Also, Jiao and Heath51

carry out an interesting reflection on the conservativeness requirements, as they consider not to be justified
enforcing equilibrium over two different discretizations of the same surface. As a result, they propose to
enforce conservativeness conditions into an intermediate, sometimes called virtual surface, a concept which
has also been addressed by many other authors.13,14,54

Another extended family of methods are the Radial Basis Functions (RBF). Radial basis functions have
been very successful in various Fluid-Structure Interaction applications,44,48 also obtaining accurate results
in the review carried out by de Boer et al.45 The method is well described by Beckert and Wendland,48 and
is based on the definition of an interpolation function as
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g(x) =

N∑
i=1

αiΦ(‖x− xi‖) + p(x) (19)

where N is the number of centers, xi, distinct from each other, and with a set of associated discrete values gi,
i ranges from 1 to N , Φ(‖x‖) is the radial basis function that depend on the method adopted and both the
coefficients αi and the low degree polynomial p(x) are to be determined from the interpolation conditions.48

One widely extended function in literature relevant to Fluid-Structure Interaction problems is the Thin-Plate
Splines (TPS) function, applicable on the interpolation of flexible surfaces,44 and defined as

ΦTPS(‖x‖) = ‖x‖2 log ‖x‖ (20)

A similar method is the multiquadric RBF, which uses quadratic basis functions and an user-defined
parameter a that controls the shape of the function44

ΦMQ(‖x‖) =

√
‖x‖2 + a2 (21)

According to Smith et al.44 and de Boer et al.,45 both of these functions are appropriate for their use
with unstructured grids and typically yield accurate results without the need of orthogonal projection or
search algorithms. On the other hand, they have shown problems when sharp discontinuities appear in
the function that is to be transferred, and also a high computational cost. In order to reduce this cost, it
is possible to employ functions with compact support, this is, only a few nodes within a certain radius of
the center are affecting the interpolation.48 One of the most extended compactly supported functions is
Wendland three-dimensional C2 function55

ΦW (‖x‖) = (1− ‖x‖ /r)4(4 ‖x‖ /r + 1) for ‖x‖ < r (22)

This function is locally defined by means of the radius r, which is defined a priori, and leaves out of the
interpolation any value that is further away from the center than the radius by accepting only positive values
on the first term of the equation. A large radius guarantees a better approximation to the solution, whether
a small radius can be solved more efficiently. Moreover, the use of a fixed radius guarantees the existence of
a solution.48

III. Implementation

III.A. Fluid solver

The fluid solver that has been used in this work is the finite volume-based Euler/N-S/RANS solver in SU2.
This solver has already been thoroughly described in previous publications by Palacios et al.20,21 and it is
not the purpose of this paper to provide a deep revision of its features; the reader may refer to the previously
cited articles or to the project websitea. Nevertheless, in this section a brief description of the solver main
features will be carried, explaining the key changes in the code architecture that have been necessary for the
implementation of FSI features.

III.A.1. Solution method

For the solution of the fluid equations, Eq. (1), SU2 contains a dual-grid, edge-based discretization that uses
vertex-based control volumes,20,21 as shown in Fig. 3. The semi-discrete form of the fluid problem can be
written as ∫

Ωe
i

∂U

∂t
dΩ +

∑
jεN(i)

(F̃ cij + F̃ vij)∆Sij = 0 (23)

where the numerical convective F̃ cij and viscous F̃ vij fluxes are projected over the edge ij, ∆Sij is the area
of the face associated to that edge, N(i) is the set of nodes who are neighbours to i, and Ωi is the control
volume associated to node i. The summation term in the equation corresponds to the spatial residual, which
is computed and stored at the nodes.

ahttp://su2.stanford.edu/
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Ωi

nij

i

j

Primal

grid

Dual

grid

Figure 3. Dual grid discretization

Several upwind and centered methods to compute the convective
and viscous terms have been implemented in SU2. Regarding time
integration, a dual time-stepping strategy56 is adopted. The fluid
problem is reformulated introducing a fictitious time variable τ that
is used to converge a pseudo-steady state problem, resulting in

∂U

∂τ
+R∗(U) = 0 (24)

where the modified residual R∗(U) for a 2nd-order in time scheme is

R∗(U) =
3

2∆t
U +

1

|Ω|n+1

(
R(U)− 2

∆t
Un |Ω|n +

1

2∆t
Un−1 |Ω|n−1

)
(25)

being ∆t the physical time step and R(U) the residual of the original equation.

III.A.2. Code structure

The code structure has been previously defined by Palacios et. al ,20 but it has been modified in this work
in order to more effectively account for multi-zone multidisciplinary problems. This is described in Fig. 4.
Two new layers of abstraction have been introduced in the main core, namely the CDriver and CIteration
classes, in order to increase the modularity of the solver and to ease the coupling of different features.

COutputCConfig CDriver

CSingleZoneDriver

CIteration

CMeanFlowIteration

CIntegration

CMultiGridIntegration

CGeometry

CPhysicalGeometry

CSolver

CEulerSolverCNSSolver

CVariable

CEulerVariable CNSVariable

CNumerics

CUpwRoe Flow

CAvgGrad Flow

SU2 CFD

ANotation:

A

B

B

Class B is a child class of class A

Class B is instantiated by class A

Figure 4. Class hierarchy for solving a Navier-Stokes problems.

From bottom to top, the class CIteration accounts for the different stages of the solution process within
one time step. In particular, it provides support for the pre- and post-processing of the solver, the itera-
tion itself and the solution update once convergence has been reached. The modularity of this approach
permits to combine different solvers using the upper-level class CDriver. For a single zone, the child class
CSingleZoneDriver is in charge of performing the operations of CIteration in the appropriate order; the full
potential of this class will be further described in section III.C.1. With the objective of completeness, the
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full list of the child classes available at the time of writing for this two new classes is given in Fig. 5. The
new layers of abstraction are designed so that one can more easily couple multiple physics within a flexible
framework, including new multi-physics implementations not previously envisioned by the authors.

CIteration

CMeanFlowIteration

CFEM StructIteration

CWaveIteration

CHeatIteration

CPoissonIteration

CAdjMeanFlowIteration

CDiscAdjMeanFlowIteration

CDriver

CSingleZoneDriver

CMultiZoneDriver

CSpectralDriver

CFSIDriver

Figure 5. List of child classes for the CIteration and CDriver classes.

III.B. Structural solver

The structural solver has been fully recast in order to improve its flexibility and allow for the solution of
more complex, geometrical and material non-linear problems. In order to do so, a whole new infrastructure
has been built and developed in terms of a new set of classes that will be described in this section. This new
scheme will ease further improvements to the suite, such as the use of higher-order Finite Elements, or the
employment of more complex material models than those described here, simply by adding new child classes
to the current structure.

III.B.1. Solution method

The current implementation allows for static and dynamic structural analysis using both a linear elastic
setting, and a large-deformations geometrically non-linear problem with hyperelastic, compressible Neo-
Hookean material model.

In a linear setting, and assuming no structural damping, Eq. (5) may be discretized in space using the
Finite Element Method. Given that the body is subject to a set of externally applied forces Fe, the structural
response will be calculated by imposing equilibrium at the nodes using the principle of virtual work, subject
to boundary and compatibility conditions. The resulting expression for linear elasticity may be written as
the product of a mass matrix M and a stiffness matrix K, multiplying respectively the acceleration and
displacement terms of the solution57

Mü + Ku = Fe (26)

In a non-linear setting, however, the nature of the problem requires the linearization of the principle
of virtual work. The problem may now be written in an Updated Lagrangian implicit Newton-Raphson
formulation as57,58

Mt+∆tü +t+∆t K∆un =t+∆t Fe −t+∆t Tn−1

t+∆tun =t+∆t un−1 + ∆un
(27)

where the stiffness matrix K = Kc +Kσ accounts for the constitutive and stress terms of the equations and
T is the vector of internal equivalent nodal forces. For nodes a and b within an element e, the constitutive
and stress components of the tangent matrix, the internal nodal forces vector, and the mass matrix, may be
written as57,58
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Ke
c,ab =

∫
Ωe

s

BeT

a DeBe
bdΩes

Ke
σ,ab =

∫
Ωe

s

(∇Ne
a · σe∇Ne

b)IdΩes

Me
ab =

∫
Ωe

s

ρesN
eT

a Ne
bdΩes

Te
a =

∫
Ωe

s

σe∇Ne
adΩes

(28)

In terms of material modelling, a linear elastic formulation has been implemented. Three-dimensional
and two-dimensional analysis using either plane stress and plane strain assumptions are allowed. For non-
linear applications, a compressible neo-Hookean non-linear material model has been implemented, which has
the following expression for its free energy function:58

Ψ =
µ

2
(tr(b)− 3)− µ ln J +

λ

2
(ln J)2 (29)

With regards to the time integration, the Newmark59 and the Generalized-α60 integration methods have
been implemented in SU2. Both methods rely on the approximations

t+∆tu =t u + u̇∆t+ [(
1

2
− β)tü + βt+∆tü]∆t2

t+∆tu̇ =t u̇ + [(1− γ)tü + γt+∆tü]∆t
(30)

The Newmark method imposes equilibrium at the end of the time step according to Eq. (27), while the
Generalized-α method introduces the parameters αm and αf (0 < αf , αm < 1) and imposes equilibrium at
an intermediate point within the time step, as

Mt+∆t−αm ü +t+∆t−αf K∆un =t+∆t−αf Fe −t+∆t−αf Tn−1

t+∆t−αfun =t+∆t−αf un−1 + ∆un
(31)

III.B.2. Code structure

A Finite-Element Method based, non-linear structural solver has been implemented in SU2, following the
same philosophy of modularity as the original fluid solver. This flexible structure of the code will allow for
a sustainable growth of the code, as new features may be added to address more complex and specialized
problems just by developing and expanding the capabilities. The main modifications in the code affect the
CSolver and CNumerics classes, as shown in Fig. 6, and will be thoroughly described in this section.

With regards to the CSolver class, the original CFD code defines an object pertaining to the class
CVariable for each point in the mesh. The child class of CVariable used depends of the physics of the
problem, and it is responsible for storing the variables of the problem at the node level. Such structure has
been proven to be very adequate for the solution of the fluid problem by means of a dual-grid, edge based
Finite Volume integration of the Navier-Stokes equations. The vertex structure has been maintained in the
structural solver with the definition of the child class CFEM ElasVariable, as the Finite Element method
computes the solution of the structural problem at the nodes of the elements. As a result, the displacements
u, obtained from the solution of Eqs. (26) and (27), as well as the velocities u̇ and accelerations ü, are stored
at the nodes.

The discretization of the continuum using the Finite Element method requires, however, to consider the
element also as a basic entity over which the solver will loop and compute the relevant magnitudes. In
order to do so, a new CElement class has been defined, which hosts the common properties of the FEM
structure, and aims for an improved modularity of FE based solvers in SU2. One child class of CElement is
defined for each relevant kind of element that may be used in SU2. The current implementation is limited
to linear, first order elements: 3- and 4-node elements for two-dimensional problems, and 4- and 8-node
elements for three-dimensional problems. This list can be extended to include higher-order elements, due to
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COutputCConfig CDriver

CSingleZoneDriver

CIteration

CFEM StructIteration

CIntegration

CStructuralIntegration

CGeometry

CPhysicalGeometry

CSolver

CFEM ElasticitySolver

CVariable

CFEM ElasVariable

CNumerics

CFEM NonlinearElasticity

SU2 CFD

CElement

CTRIA1

CQUAD4

CMat NeoHook Comp

CGaussVariable

ANotation:

A

B

B

Class B is a child class of class A

Class B is instantiated by class A

Figure 6. Class hierarchy for solving a two-dimensional, non-linear structural problem.

the flexibility of the parent class CElement, not only for structural problems but also for fluid analysis or
any other problems not previously envisioned by the authors. The full list available at the time of writing is
shown in Fig. 7.

The number that accompanies the name of the element in Fig. 7 defines the number of Gaussian Points
which each element uses for a full integration in its domain and to its predefined order. For non-linear
structural analysis, several relevant magnitudes such as the deformation gradient F, the Cauchy stress
tensor σ or the constitutive matrix D are computed at the Gaussian Points in order to perform Gaussian
integration. The same happens with the shape functions N and their gradients ∇N. Therefore, an auxiliary
class CGaussVariable has been defined, that temporarily stores the value of these magnitudes until the full
element has been integrated. This class is common to all elements.

CElement

CTRIA1

CQUAD4

CTETRA1

CHEXA8

CGaussVariable

Figure 7. List of child classes for the CElement class.

With regards to the CNumerics class, two levels of inheritance have been defined and are directly related
to the two types of non-linearity that may be encountered in structural analysis. At the first level, the child
classes CFEM LinearElasticity and CFEM NonlinearElasticity have been defined (Fig. 8), which relate to
the geometrical non-linearity of the structural problem. These two classes share common properties through a
parent class CFEM Elasticity, although the differences between both approaches justify their separation into
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two different child classes. These classes are responsible for computing, at the element level, the constitutive
and stress terms of the tangent matrix, the mass matrix or any other relevant term for the left or right hand
side of Eqs. (26) and (27). The final assembly and imposition of boundary conditions will then be done by
CFEM ElasticitySolver.

In order to account for material non-linearities, a second level of inheritance has been defined (Fig. 9)
under the class CFEM NonlinearElasticity. These child classes contain the equations that define the material
model to be employed and have the common interface with the geometrical part of the problem in the
computation of the constitutive matrix D and the Cauchy stress tensor σ. The current implementation in
SU2 includes a Neo-Hookean compressible hyperelastic material model, and more models will be incorporated
due to the modular structure of the code.

CNumerics

CFEM Elasticity

CFEM LinearElasticity

CFEM NonlinearElasticity

Figure 8. Child class structure for the definition of geo-
metrical non-linearities.

CFEM NonlinearElasticity

CMat NeoHook Comp

Figure 9. Child class structure for the definition of ma-
terial non-linearities.

III.C. Coupled solver

The high computational cost per iteration of Newton-Raphson methods, together with a simpler and more
modular implementation, has led to the development in this work of a Block Gauss-Seidel method with
Aitken’s relaxation for time-accurate coupling. With regards to spatial coupling, the code is being built
to accommodate both RBF and projection methods, for their application in problems with non-matching
discretizations. The structure of the code will be further described in the following sections.

III.C.1. Code structure for time coupling

In order to tackle the solution of problems with two or more physical domains, it was found necessary to
define two new classes, CDriver and CIteration. This has already been explained in section III.A.2, but the
full potential of the class CDriver may be seen in this section. In the context of multi-physics problems, this
will be the class responsible for driving the simulation and determining the sequence at which the iterations
of the different solvers are run. Using this abstraction, a whole set of completely independent solvers may
be built by different and specialized teams, and then combined together for multi-disciplinary studies.

The solution of each problem is obtained independently using the appropriate solver on each case. The
BGS method requires, however, that the solutions need to be communicated through a common interface in
order to enforce equilibrium and compatibility conditions at the end of each time step. It is important to
note that, for parallel simulations, this communication has to be carefully performed, as the decomposition of
either one of the physical domains involved in the calculations does not necessarily have to be compliant with
the rest. As a result, an independent parent class CTransfer has been built, which transfers the information
between two independently discretized and decomposed domains using the adequate MPI instructions.

At the same time, the parent class CTransfer has a set of child classes which account for the physics
of the transfer. For example, in a Fluid-Structure Interaction problem, the fluid tractions applied over the
interface will be transferred from the fluid domain to the structural domain, while in the opposite direction
the relevant magnitudes are the structural displacements along the boundary. This separation in parent
(geometrical) and child (physical) classes allows for the code to grow independently in performance and
features. This means that new child classes may be defined in the future for different kinds of multi-zone
problems without interfering with the routines that define the parallel transfer of the information. In the
same way, these routines may be improved without modifying the physics behind the solvers. This structure
is further described in Fig. 10.
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CDriver

CFSIDriver

CFEM StructIteration

CTransferCIteration

CMeanFlowIteration

CTransfer StructuralDisplacements

CTransfer FlowTraction

CIteration

ANotation:

A

B

B

Class B is a child class of class A

Class B is instantiated by class A

A B Class B receives information from class A using class CC
0 I

I0

0I

Figure 10. Class structure for the information transfer between two solvers

III.C.2. Code structure for spatial coupling

The interpolation class CInterpolate has been built independently of the transfer CTransfer class, in order
to maintain the modularity of the code. The class relies on the dual grid structure described by Palacios et
al.,20 by storing the information of the donor points and the relevant terms of the transformation matrix H
at the target vertices (Fig. 11).

During the interpolation process, each vertex will receive the physical information from the relevant
child class of CTransfer and use it appropriately in accordance with the interpolation procedure of choice.
Each interpolation procedure constitutes a child class of the parent CInterpolate class. The list of child
classes available at the time of writing is shown in Fig. 12. Preliminary studies using Nearest-Neighbor
and Isoparametric interpolation methods confirm the validity of the proposed structure and encourage the
development of some of the methods developed in section II.E. In particular, the consistent and conservative
interpolation method proposed by Brown49 has been already implemented and is further developed in the
next section.

CDriver

CFSIDriver

CFEM StructIterationCTransfer

CIteration

CMeanFlowIteration

CIteration

ANotation:

A

B

B

Class B is a child class of class A

Class B is instantiated by class A

A

Class B receives information interpolated by class C and using class D, from class A 

B

CGeometryCVertex

CFEM ElasticitySolver

CGeometry CVertex

CNSSolver

CInterpolate

C
0 II

I

0

II
0

II

D

I'

I I' I' I

Figure 11. Class structure for the interpolation of information between two discretizations
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CInterpolate

CNearestNeighbor

CIsoparametric

Figure 12. Child class structure for the implementation of interpolation methods

III.C.3. Consistent and conservative interpolation method

Interpolation schemes with non matching meshes and external structural solvers have already been success-
fully demonstrated in SU2,61 and a consistent and conservative method has been implemented natively in
the context of this work to assess the validity of the code structure, following the work of Brown.49

According to Brown,49 it is possible to use a set of assumed displacement functions to interpolate the
displacement of the structure in between the mesh nodes, which gives a set of linear functions of the nodal
displacements us for the displacement at any point in a finite element. By linking each node in the fluid
mesh by a rigid rod to the nearest node on the structure mesh we can use the displacement interpolated
within a single finite element and relate the displacements for points that are not exactly coincident with
the plane of the finite element. In Equation (32), X are the points on the fluid mesh and x are the points
on the structure mesh which are translated u(·) and rotated uθ(·).

Relating the displacement on the finite element to the displacement of the node on the fluid mesh:

µ(X) = u(x)− (X− x)× uθ(x)

µ(X)θ = uθ(x)
(32)

Introducing an assumed interpolation between the displacement on the finite element u to the displace-
ment of the finite element nodes q:

u(x) = [nx(x)ny(x)nz(x)]
T · q = η(x)T · q (33)

Combining Equations (32) and (33), using the matrix form of the cross product which is expanded in
Equation (35).

u(x) = [nx(x)ny(x)nz(x)]
T · q = η(x)T · q

µ = η(x)T · q− [X− x] · ηθ(x)T · q
µθ(X) = ηθ(x)T · q

(34)

[X− x] =

 0 (x3 −X3) (X2 − x2)

(X3 − x3) 0 (x1 −X1)

(x2 −X2) (X1 − x1) 0

 (35)

Using:

H(X) = η(x)T − [X− x] · ηθ(x)T

Hθ(X) = ηθ(x)T
(36)

we now have extrapolation matrices between the respective meshes.

FT · δq =

∫
pT ·HT δq dS

FT =

∫
pT ·HT

θ dS

(37)

It only remains to find the values for the interpolation matrix HT , which can be found using isoparametric
interpolation functions. With these functions, the value at a point on the aerodynamic mesh can be expressed
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as a weighted sum of the values at the nodes of a single element on the structural mesh. Since only the
weight values are required, the isoparametric coefficients are not explicitly required.

µ =


(1− r)(1− s)
r(1− s)
rs

(1− r)s

 · q = η(x)T · q (38)

The values in η(x) can be found by using the coordinates of the points.[
1

x

]
=

[
1 1 ... 1

x1 x2 ... xn

]
η(x)T (39)

For meshes where the points of the aerodynamic and structural meshes are coincident, the coefficients
for the interpolation matrix are simply 1 at the matching node and 0 elsewhere. This interpolator is generic
and accounts for displacement and rotation degrees of freedom (DOFs). For the solid FEM developments in
this work the rotations are neglected as only displacements are considered at the nodes.

III.D. Mesh morpher

An adequate deformation of the fluid mesh is critically important for the final accuracy of the solution and
for the computational time involved in the calculations. In this work, the mesh will be deformed using a
pseudo-structural approach62 that will be briefly described in this section.

III.D.1. Solution method

Given a certain displacement vector on the interface uΓ, it is necessary to update the nodes of the whole
domain, uΩ, in a way that does not compromise the quality of the mesh. The mesh movement problem in
SU2 is treated as a linear-elasticity problem KmuΩ = f , in which the boundary conditions determine the
displacements of the inner nodes. The interface displacements are set to be the structural displacements
computed, uΓ,i = uΓ,s, while the outer boundaries are set to be static along the problem, uΓ,f,ext = 0.
In order to prevent the smaller elements from having negative areas, the stiffness is set cell-dependent, as
an inverse function of the element’s area or volume, Ee = min(Ωj)/Ωe. The Lamé constants are finally
determined as µe = Ee and λe = −Ee,62 thus completely defining the problem.

III.D.2. Code structure

The structure of the mesh morpher is independent from the particular solver that need to use it, and only
depends on the particular discretization of the physical domain under study, as outlined in Fig. 13.

CDriver

CFSIDriver

CIteration

CMeanFlowIteration

CGeometry

CNSSolver

CVolumetricMovement

SU2 CFD

Figure 13. Class structure for the mesh morphing of the fluid discretization
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IV. Numerical Results & Discussion

The current implementation of the coupled solver allows both for a loosely-coupled, Conventional Serial
Staggered (CSS) time coupling and for a strongly-coupled, Block Gauss-Seidel method with relaxation, using
a fixed or a dynamic Aitken’s parameter, as explained in section II.D. The spatial coupling will be limited
here to a common discretization of the interface for fluid and structure. The structural solver is able to run
either linear analysis or non-linear analysis both in terms of geometry and material properties. In order to
address the verification and validation of the fluid solver with an ALE formulation, the reader may refer to
section V.A.5 in the paper by Palacios et al.20 To investigate the implementation of the FSI problem, we
will study the behavior of a flexible beam attached on the downwind side of a rigid square, a problem that
has been used extensively as benchmark for Fluid-Structure Interaction applications.14,18,23,26,39,41,63

IV.A. Problem description

The geometrical and physical description of the case is shown in Fig. 14 and Table 1. The problem is
computed in 2D, and consists of a square cylinder immersed in a low-Reynolds number flow. The cylinder
sheds vortices, which generate areas of low-pressure on its wake. A flexible cantilever is attached on the
downwind side of the square, and receives an alternated force generated by the vortex street, therefore
suffering from vortex-induced vibrations. For a linear model, the first natural bending mode of the structure
corresponds to 3.03 Hz. The boundary conditions are set to inlet on the upwind side, outlet on the downwind
side, and slip walls on the upper and lower boundaries. The square and the appendix are set to no-slip walls.

8

slip-wall

12 H

14.5 H5 H

H x

L

y

slip-wall

outlet

u

t

H

Figure 14. Fluid-Structure Interaction test case (not to scale)

Table 1. Problem definition

Geometry

H 1 cm

L 4 cm

t 0.06 cm

Fluid Structure

u∞ 0.513 m/s E 2.5 ·105 Pa

ρf 1.18 kg/m3 ρs 100 kg/m3

µf 1.82 ·10−5 kg/m·s ν 0.35

Re 332

Ma 0.2

This problem was originally proposed in 1998 by Wall and Ramm,63 and has since then been used as
benchmark for numerous FSI implementations. Two parameters that are extensively used in the literature
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as a validation criterion are the frequency and maximum amplitude of the vertical displacements at the tip of
the cantilever. The reported frequencies range normally from 3.0 to 3.2 Hz, while the tip displacements range
from 1.0 to 1.35 cm. A third criterion will be used in this paper, which is the modulation of the response
by higher frequency effects. Some authors, as for example Dettmer and Perić14 or Froehle and Persson,18

have presented time histories that show the presence of a second mode of vibration. As Dettmer and Perić
already highlighted and as it will be seen in this paper, convergence analysis show the rather complex nature
of the dynamics of this configuration.

IV.B. Convergence study

For this paper, three different meshes have been generated using a dual-grid FV discretization. They will
be named coarse, fine and finest. They combine triangular elements and boundary layer refinement to be
able to capture the separation due to the bluff bodies at the tested Reynolds number. The cantilever is
discretized using a fine, 1128-quadrilateral, linear FE mesh, using 6 elements in the thickness. The meshes
were generated using the open-source code Gmsh,64 and for the region closer to the body they are shown in
Fig. 15. The properties of the meshes are compared in table 2.

Figure 15. Fluid discretizations: coarse (top), fine (center) and finest (bottom) meshes for the FSI benchmark.

Table 2. Mesh refinement for convergence study

Mesh Fluid nodes Structural elements

Coarse 18778

Fine 27216 1128

Finest 38988
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The coupled problem will be solved in all cases using a Block-Gauss-Seidel (BGS) approach with dynamic
Aitken’s relaxation. The convergence criteria on the interface is set to 1/1000 of the cantilever thickness,
which generally requires between 4 to 5 iterations to converge. A staggered approach was found to diverge
for a time step ∆t = 0.0075 s. Two subiterations of the BGS method, however, were enough to maintain the
stability of the simulation for all the tested cases, which matches the reported by Wood et al.23 The structure
is integrated using a Newmark time integration procedure as explained in section III.B.1, incorporating a 2%
numerical damping in order to prevent the divergence of the solver due to high frequency structural effects.
The solver is started from a slightly perturbed, symmetric fluid state, previously computed with a static
beam in order to avoid non-physical transient effects due to the initialization of the fluid solver. In terms of
time accuracy, all three domain discretizations have been run using two different time discretizations, with
∆t = 0.0075 s as the reference time step and ∆t = 0.005 s for an improved solution. The time histories of the
vertical tip displacements and the Fourier transform analysis are shown in Fig. 16 for all three discretizations
and for the two time steps considered.
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dt = 0.0075

dt = 0.005

dt = 0.0075

dt = 0.005

dt = 0.0075

dt = 0.005

t(s) f

a)

b)

c) t(s) f

t(s) f

Figure 16. Time histories of the vertical displacements at the tip of the cantilever and FFT plots, for the a) coarse, b)
fine and c) finest fluid discretizations, and the two time steps considered, ∆t = 0.0075 s and ∆t = 0.005 s

Firstly, it may be observed in Fig. 16,a) that the coarse mesh has been converged with the time step. The
time histories for ∆t = 0.0075 s and ∆t = 0.005 s almost overlap. The frequency and amplitude measured
match quite well for both cases, and no higher frequency effects are clearly appreciated in any of the time
discretizations. It may be observed that the beam starts to vibrate with a higher frequency, which according
to the FFT plot is estimated to be around 6 Hz. After 5 seconds of simulation, the cantilever has reached a
stationary state of vibration with an average frequency f̄=3.15 Hz, with a maximum amplitude dmax=1.15
cm. These results agree well with the results published in the open literature. It is noted, however, that
the vibration only occurs at one frequency once the stationary state has been reached; no higher frequency
effects are observed.

However, for the fine discretization, this is no longer true, see Fig. 16,b). In this case, a higher frequency
wave clearly modulates the amplitude of the vibration. This behavior matches the observations of Dettmer
and Perić (2006)14 regarding the appearance of high frequency effects for dense spatial discretizations. For
∆t = 0.0075 s, the mean frequency measured is calculated to be f̄ = 3.10 Hz, ranging from 3.04 to 3.19
Hz, and with a maximum amplitude dmax = 1.25 cm. For ∆t = 0.005 s, the mean frequency measured is
f̄ = 3.11 Hz, ranging from 2.96 to 3.22 Hz, and the maximum amplitude dmax = 1.21 cm. Two peaks are
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observed at the FFT plot; the first peak corresponds with the vibration of the appendix, while the second
corresponds to 6 Hz of frequency. The stationary state reached is equivalent for both time steps, so the
solution is fully converged. A contour plot of the pressure field and the structural displacements is presented
in Fig. 17 for both discretizations. It may be observed that some vortical structures are pointed out, as
they are remarkably more defined for the fine discretization (Fig. 17, b) respect to the coarse discretization
(Fig. 17, a).

a.1)

a.2)

a.3)

a.4)

b.1)

b.2)

b.3)

b.4)

Figure 17. Pressure contours and structural displacements for a cycle of vibration for the coarse mesh (a) and for the
fine mesh (b). T=0 (1), T=π/2 (2), T= π (3), T=3π/2 (4). The arrow in (b) points out some vortical structures that
are damped out by the coarser discretization.

The behavior of the coupled problem changes significantly for the most refined, finest discretization. In
particular, the problem converges to two different solutions depending on the time step. A larger time step,
∆t = 0.0075 s, converges to a solution in which the cantilever vibrates with an average frequency f̄ = 6.0 Hz,
which ranges from 5.7 to 6.27 Hz, and a maximum amplitude dmax = 0.23 cm. This behavior is completely
different from the general behavior of the coupled problem reported in the literature, and also from the
results obtained in this work with different discretizations but the same general settings. Interestingly, with
the smaller time step ∆t = 0.005 s the coupled problem behaves similarly to the other tested meshes and
time steps. The vertical displacement at the tip shows in this case an average frequency f̄ = 3.05 Hz and
maximum displacements dmax = 1.15 cm. Again and the amplitude is modulated by a higher frequency
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wave.
The solution of the finest discretization converges to the published results with the smallest time step

considered; however, the dependency of the result in the time discretization for a given mesh in a way that
two different stable solutions are reached deserves further assessment. We consider to be particularly relevant
the fact that for every FFT plot of those shown in Fig. 16 there are two peaks, which correspond to the
frequencies f1 ≈ 3 Hz and f2 ≈ 6 Hz. Even the coarsest test case shows some higher frequency effects during
the transient period at the beginning of the simulation, which in that particular case are later damped out.

It is common when dealing with Vortex-Induced Vibrations (VIV) generated by bluff bodies to use the
non-dimensional Strouhal number St = fH/U to characterize the frequency of the response.65–67 For this
test case with H = 1 cm and U = 51.3 cm/s, the Strouhal numbers for the two frequencies f1 and f2 under
consideration are St1 = 0.058 and St2 = 0.117.

Hübner et al., in a paper published in 2004,68 solve a problem with very similar settings to those presented
in Fig. 14 and Table 1. Their test case differs from the one tackled here in the structural settings, but also
in the inflow velocity used, which is set to be 31.5 cm/s. They solve a simulation with a rigid structure, i.e.,
with no structural deformation, and a refined ∆t = 0.001 s. Interestingly, they report that for the rigid case
the square cylinder sheds vortices that lead to a periodic behavior and a frequency f = 3.7 Hz. The authors
explain that the vortices move over the cantilever and alternate in size. That would result on an alternate
forcing acting over the structure at the frequency of the shedding. The Strouhal number of this case, with
H = 1 cm, U = 31.5 cm/s, and f = 3.7 Hz, is St = 0.117. This value agrees with our computed value of
St2. Moreover, a Fourier analysis of the forces acting over the cantilever when this is held rigid for the three
meshes presented in this work results in peaks ranging from 5.15 to 5.5 Hz and their harmonics, thus a value
of St ranging from 0.100 to 0.107.

The results obtained in this section are summarized in Table 3. For all cases except for the finest mesh
with the larger time step, the results agree very well the literature. This latter case converges to a Strouhal
number similar to that presented by Hübner et al.68 for a rigid cantilever.

Table 3. Summary of results and convergence study

Average Max tip High freq. Strouhal

frequency (Hz) displ. (cm) effects number

Wall and Ramm63 3.08 1.31 Yes 0.06

Matthies and Steindorf41 2.99 1.34 No 0.058

Dettmer and Peric14 2.96 - 3.31 1.1 - 1.4 Yes 0.058 - 0.065

Wood et al.23 2.78 - 3.125 1.1 - 1.2 No 0.054 - 0.061

Kassiotis et al.26 3.17 1.0 No 0.062

Habchi et al.39 3.25 1.02 - 0.063

Froehle and Persson18 3.18 1.12 Yes 0.062

Hübner et al.68 (rigid cantilever) 0.117

Coarse, ∆t = 0.0075 s 3.15 1.15 No 0.061

Coarse, ∆t = 0.005 s 3.15 1.15 No 0.061

Fine, ∆t = 0.0075 s 3.10 1.25 Yes 0.060

Fine, ∆t = 0.005 s 3.11 1.21 Yes 0.060

Finest, ∆t = 0.0075 s 6.0 0.23 - 0.117

Finest, ∆t = 0.005 s 3.05 1.15 Yes 0.059

Therefore, we conclude that the higher frequency effects reported in several papers and that result in a
modulation of the response of the cantilever are due to the vortex shedding frequency of the square cylinder.
In order to capture these vortex shedding effects, it is necessary to refine the fluid domain up to a level of
discretization that prevents the vortical structures from damping out. In those cases, even a stable state of
the coupled system may occur at that higher frequency, as shown in Fig 16, c).

It should be noted that the vortex shedding effects for the benchmark test case are not locked in with
the response of the cantilever, due to a difference in frequencies of about 3 Hz. The frequency of vibration
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that has been reported in the literature corresponds, mainly, to the vibration of the structure, which by
being much heavier than the fluid dominates the coupled phenomenon. Once the fluid loads become non-
symmetric, the structure starts its movement. The combination of a low elasticity modulus and a small
inertia results in the resonance of the cantilever with a large amplitude. The effects of the vortex shedding,
which is determined by the shape of the bluff body upstream, are then small compared to the amplitude
of the structural vibration. These effects may even be neglected for coarse fluid discretizations, as they are
damped out once a stationary state is reached.

IV.C. Analysis of the coupled dynamics

In order to further understand the problem, some relevant parameters on the dynamics of the coupled
solution, such as structural inertia and stiffness, will be analyzed in this section. For simplicity and faster
convergence, they have been run using the coarse mesh, which we have shown to be able to capture the first
mode of the problem for the benchmark test case, even though it damps out the higher frequency effects for
that particular case. Convergence, however, will be demonstrated for two tested cases in which the vortex
shedding frequency is coupled with the dynamics of the coupled problem. This analysis is also intended to
demonstrate the robustness of the presented implementation.

IV.C.1. Structural properties

We have explained in the previous section that the dynamics of the coupled problem are governed by the
structural behavior. In order to confirm this statement, a simple test has been carried out, which consists
in analyzing the effects of solving the problem with a linear, structural model. The linear model, given that
the cantilever reaches vertical deflections over a 25% of its length, is expected to provide a source of error
from the structural perspective (see Fig. 18). This behavior would be expected to modify the fluid flow, as
the length of the appendix would increase under linear assumptions for large displacements.

Nonlinear
Linear 

Figure 18. Differences in geometry of the cantilever beam
when computed using a linear solver as opposed to a non-
linear solver

However, a linear solver is still able to accurately
compute the first bending mode of the structure and
its frequency. In fact, the assumed natural frequency
of 3.03 Hz for the cantilever corresponds to linear as-
sumptions, while it is known that natural frequencies
are slightly modified when accounting for geometrical
non-linearities.69

The results obtained in section IV.B using a geo-
metrically non-linear solver results will be compared
with those obtained using a linear, structural solver,
using the coarse configuration. We obtain the result
shown in Fig. 19. It may be observed that the solu-
tion obtained using a linear solver is very close to the
non-linear solution. The average frequency and the

maximum tip displacement are respectively f̄ = 3.13 Hz and dmax = 1.20 cm, thus in line with the results
in the open literature.
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Figure 19. Time history and FFT plot for the linear structural model. Comparison with the non-linear model.

Another interesting consideration may be the study of the effects of the 2D formulation. It is well known
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that there are two main approaches for bidimensional elasticity, namely, plane stress and plane strain.
Assuming plane stress, the cantilever would be solved as if it were a thin plate with fluid loads only on its
plane and unconstrained deformation in the third dimension. This has been the hypothesis adopted in this
work, in order to compare with the results in literature. However, in order to use the problem as a benchmark
for 3D cases applying symmetry boundary conditions, a plane strain case would be more appropriate. The
behavior of the coupled problem is indeed affected by this assumption, as shown in Fig. 19. The average
frequency measured using a plane strain assumption is f̄ = 3.27 Hz, while the maximum tip displacement is
dmax = 1.10 cm.
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Figure 20. Time history and FFT plot for the 2D plane strain model. Comparison with the plane stress model.

IV.C.2. Structural density effects

The structural density has been modified in order to analyze the effects of the inertial effects of the structure.
Four test cases have been run, using the coarse mesh. Assuming ρs=100 kg/m3 as the reference structural
density, the simulations have been run using 1

2ρs,
3
4ρs,

3
2ρs, and 2ρs. The Young’s modulus E = 2.5 ·105 Pa

has also been scaled in the same proportion to maintain constant the first natural bending frequency.
The results are shown in Fig. 21. It may be observed that, as the structural density is increased, the

transient time before the appendix reaches a stationary state on its first natural frequency is also increased.
Lighter structures with smaller inertia, are induced to a resonant state by the the unsteady wake generated
soon after the simulation is initialized. The structure vibrates mainly on its own first natural bending mode.

On the other hand, heavier structures take longer to reach this state. Their greater inertia makes it harder
for the vibration state to develop. In particular, in the case of 2ρs, this situation has not been reached in the
10 seconds of simulation. Interestingly, the appendix does vibrate with a much smaller amplitude of roughly
0.2 cm during this transient period. This phenomenon occurs at the vortex shedding frequency previously
reported in section IV.B. The energy contained at this higher frequency of 6 Hz is for that case comparable
with the contained at the natural frequency of 3 Hz. By the end of the simulation, however, it seems that
the state of resonance is slowly developing.

IV.C.3. Frequency study

Finally, in a similar fashion as in the previous section, the influence of modifying the structural stiffness
maintaining the structural density (thus, changing the bending frequency) has been further studied in this
section. A range of linear frequencies from 2 to 10 Hz has been covered, and the results are shown in Fig. 22.

When the stiffness is reduced in order to match a natural bending frequency of 2 Hz, larger displacements
and a smaller frequency are expected. This is shown in Fig. 22, a). The resonant state achieved is stationary,
with no higher frequency effects: the structure is controlling the phenomenon and the vortex shedding
frequency is damped out. However, by stiffening the structure over the limit of E = 2.5·105 Pa we obtain
a coupled problem in which two frequencies are overlapping. The amplitude of the vibration is no longer
stationary, and the frequency of the vortex shedding is no longer damped out even with the coarse spatial
discretization. It is interesting to note that, as the structural properties are set to be more stiff, the frequency
measured further differs from the linear estimation. This reflects the non-linearity of the coupled problem,
including effects such as the added mass due to the density of the fluid. This is shown in Fig. 23.

This behavior reaches a limit for the test case f) in Fig. 22, which corresponds to a theoretical linear
frequency of 7 Hz, thus a Young’s modulus E = 1.34 ·106 Pa. This is also shown in Fig. 23. The solution
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Figure 21. Study of the effects of varying the mass ratio. Time histories and FFT plots for the following structural
densities (stiffness scaled in the same proportion to maintain the first bending frequency): a) ρs = 50 kg/m3 b) ρs =

75 kg/m3 c) Reference, ρs = 100 kg/m3 d) ρs = 150 kg/m3 e) ρs = 200 kg/m3.

obtained is apparently locked in, with vibrations occurring at a frequency of 5.04 Hz. The frequency of the
coupled problem shows now a strong influence from the fluid behavior, as opposed to the test case presented
in section IV.B. This stable coupled behavior is also obtained when a test case with a Young’s modulus E =
2.75 ·106 Pa, and therefore a theoretical linear frequency of 10 Hz, is run. We then obtain a coupled state with
a mean frequency of 5.31 Hz. Given that both of these test cases were run using the coarse discretization,
a convergence analysis was run for each test case to ensure that the solution obtained was converged. This
is shown in Fig. 24 and Fig. 25, where convergence is demonstrated. The relevant magnitudes obtained for
both test cases are reported in table 4.
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Figure 22. Frequency study. Time histories and FFT plots for the following Young’s modulus, which correspond to
theoretical first bending frequencies of 2, 3, 4, 5, 6 and 7 Hz respectively: a) E = 1.1 ·105 Pa. b) Reference, E = 2.5
·105 Pa. c) E = 4.4 ·105 Pa. d) E = 6.8 ·105 Pa. e) E = 1 ·106 Pa. f) E = 1.34 ·106 Pa. The reference case is plotted
in the background of the remaining plots for comparison purposes.

Table 4. Convergence study for two test cases with theoretical frequencies of 7 and 10 Hz.

Average Max tip Strouhal

frequency (Hz) displ. (cm) number

Coarse 5.04 - 5.07 0.40 0.098 - 0.099

E = 1.34 ·106 Pa Fine 5.00 - 5.05 0.40 - 0.41 0.097 - 0.098

Finest 5.02 - 5.05 0.39 0.098

Coarse 5.31 - 5.37 0.12 0.104 - 0.105

E = 2.75 ·106 Pa Fine 5.31 - 5.36 0.13 0.104

Finest 5.32 - 5.38 0.13 0.104 - 0.105

26 of 31

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ne

 1
4,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

02
05

 



2 4 6 8 10

Theoretical, linear frequency (Hz)

1

2

3

4

5

6

7

8

M
ea

su
re

d
, 
co

u
p
le

d
 f
re

q
u
en

cy
 (

H
z)

Coupled frequency

Linear model

Figure 23. Frequency study. Theoretical frequency from a linear structural analysis compared with the measured
frequency of the coupled system.
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Figure 24. Test case with E = 1.34 ·106 Pa. Time histories of the vertical displacements at the tip of the cantilever and
FFT plots, for the a) coarse, b) fine and c) finest fluid discretizations, and the two time steps considered, ∆t = 0.0075 s
and ∆t = 0.005 s

V. Conclusions

Structural dynamics and Fluid-Structure Interaction capabilities have been implemented into the open-
source SU2 suite. A Finite Element structural solver, able to deal with both geometrical and material
non-linearities, has been natively embedded into the core of SU2. The original philosophy of modularity
of the code has been maintained, by employing and expanding the object-oriented architecture of the main
solver. In particular, a new set of classes were designed and implemented, in order to serve as the basis
for further FE-based applications. High levels of abstraction have been used in the design of the structural
solver to ease future developments.

The same idea has been maintained in the development of new structures able handle the different
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Figure 25. Test case with E = 2.75 ·106 Pa. Time histories of the vertical displacements at the tip of the cantilever and
FFT plots, for the a) coarse, b) fine and c) finest fluid discretizations, and the two time steps considered, ∆t = 0.0075 s
and ∆t = 0.005 s

solvers in the code within a single instance of SU2. In particular, new classes have been built for driving
the simulation, transferring the information and interpolating the information between different spatial
discretizations. For the particular problem of Fluid-Structure Interaction, a Block-Gauss-Seidel approach
with dynamic relaxation parameters has been implemented, thus solving the problem in strongly-coupled,
partitioned way.

The Fluid-Structure Interaction capabilities developed in this work have been tested by solving a Vortex-
Induced Vibration problem that has been widely used throughout the literature as a benchmark for FSI
solvers. The results obtained in this work are in very good agreement with the relevant literature. Moreover,
we provide a clear and concise review of the state of the art for the relevant phenomena and dynamics of
the problem.

Acknowledgements

Ruben Sanchez and Rafael Palacios gratefully acknowledge the financial support of the European Office of
Aerospace Research & Development of the US Air Force Office of Scientific Research, and the UK Engineer-
ing and Physical Sciences Research Council Grant EP/J002070/1, “Towards Biologically-Inspired Active-
Compliant-Wing Micro-Air-Vehicles”.

The commitment of the SU2 development team at the Aerospace Design Laboratory at Stanford Uni-
versity to maintain the open-source nature of the software encourages the community to engage in the
improvement, validation and further development of the code.

References

1Farhat, C., Lesoinne, M., and LeTallec, P., “Load and motion transfer algorithms for fluid/structure interaction prob-
lems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to
aeroelasticity,” Computer Methods in Applied Mechanics and Engineering, Vol. 157, No. 1-2, 1998, pp. 95–114.

2Beckert, A., “Coupling fluid (CFD) and structural (FE) models using finite interpolation elements,” Aerospace Science

28 of 31

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ne

 1
4,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

02
05

 

http://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0045-7825%2897%2900216-8
http://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS1270-9638%2800%2900111-5


and Technology, Vol. 4, No. 1, 2000, pp. 13–22.
3Farhat, C., van der Zee, K., and Geuzaine, P., “Provably second-order time-accurate loosely-coupled solution algorithms

for transient nonlinear computational aeroelasticity,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No.
17-18, 2006, pp. 1973–2001.

4Palacios, R., Murua, J., and Cook, R., “Structural and aerodynamic models in nonlinear flight dynamics of very flexible
aircraft,” AIAA Journal , Vol. 48, No. 11, 2010, pp. 2648–2659.

5Murua, J., Palacios, R., and Graham, J., “Assessment of wake-tail interference effects on the dynamics of flexible aircraft,”
AIAA Journal , Vol. 50, No. 7, 2012, pp. 1575–1585.

6Deparis, S., Discacciati, M., Fourestey, G., and Quarteroni, A., “Fluid-structure algorithms based on Steklov-Poincaré
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