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Supersonic combustion ramjets, or scramjets have the potential to facilitate more ef-
ficient transatmospheric flight and airplane-like operations of launch vehicles. Although
these airbreathing engines benefit from the mechanical simplicity of using flow deceleration
only rather than mechanical compressors to achieve the conditions necessary for combus-
tion, many challenges exist in their design. Robust and efficient design of these vehicles can
benefit from the application of surface sensitivities calculated through the adjoint method.
This work presents the derivation of a generalized boundary condition for the continu-
ous adjoint which allows optimization for arbitrary outflow-based objectives, expanding
the range of objectives that this method can address and facilitating multi-objective and
multi-disciplinary optimization. The results of using this framework to optimize for a
balance of thrust and nozzle exit area using low fidelity models of the combustion and
expansion processes downstream of the inlet geometry are presented.

Nomenclature

Symbols

Γ∞ Farfield boundary of the fluid domain
Γe Outflow boundary of the fluid domain
Ω Fluid volume domain
S Solid wall boundary

ṁ Mass flow rate [kg m−2 s−1]
A Cross-sectional area [m2]
Fun Uninstalled thrust [N ]
~v Velocity vector [m s−1]
c Speed of sound [m s−1]
f Fuel fraction
M Mach Number
P Pressure [Pa]
R Specific Gas Constant [JK−1kg−1]
T Temperature [◦K]
u, v, w Cartesian components of velocity [m s−1]

b Burner
e Outflow boundary
i Inflow boundary
t Stagnation value
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0 Freestream
10 End of nozzle/ expansion ramp
2 Entrance to isolator, end of inlet
3 End of isolator, entrance to combustor
4 Exit of combustor

J Lagrangian
Ψ Vector of Adjoint variables
~n Unit normal vector
~t Unit tangent vector
A Jacobian Matrix
F Convective Flux
J Objective Function
U Vector of conservative variables
V Vector of primitive variables
x, y, z Cartesian coordinates [m]

I. Introduction

Supersonic combustion ramjets, or scramjets, have the potential to facilitate more efficient transatmo-
spheric flight and airplane-like operations of launch vehicles. A scramjet is an airbreathing engine that

uses the compression of air over the forebody and inlet to achieve the conditions necessary for supersonic
combustion, using no mechanical compressor. These engines operate in hypersonic conditions, ranging from
Mach 5 to Mach 10 at current levels of technology. Ramjets have flown up through Mach 5.5, and at Mach
numbers of around that magnitude it becomes more efficient to use supersonic combustion.1 Flight tests
of the HIFiRE, X-51 and X-43A have had success in achieving positive thrust, while also highlighting the
difficulties of designing hypersonic airbreathing engines1–4. Under the extreme pressure and heat experienced
at these flight conditions, there is a high degree of shape uncertainty. Hypersonic vehicles for access to space
are required to operate under a very large range of flight conditions, accelerating to an altitude where rocket
propulsion takes over. In addition, the phenomenon of unstart which causes a sudden decrease in thrust
is important to consider. Shape uncertainty, the risk of unstart, and the requirement to operate at a wide
range of conditions provide additional motivation for efficient evaluation of sensitivities. Surface sensitivities
as well as sensitivities to freestream conditions can be used for optimization, to provide gradient information
to the construction of response surfaces or to probability distribution estimates, and to qualitatively view
what areas of a geometry are more or less influential to the quantity of interest.

Figure 1: Scramjet flow path with station numbers indicated along top border of the image. Methods used
to simulate each portion of the flow path are indicated along the bottom edge of the image. Contour levels
are of pressure.
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Modern simulation techniques allow for more efficient high fidelity optimization. Advances in computer
speed and efficiency make it possible to complete more function evaluations than previously, however the cpu
time required for high-fidelity optimization with large number of design variables is still significant. More
efficient calculation of the gradient of the objective function(s) can significantly reduce the time required for
optimization. The adjoint method introduced by Jameson5 provides a more efficient method of calculating
gradients, which is independent of the step size and of the number of design variables. The adjoint method
is described further in Section II.B, and allows for the evaluation of gradients with respect to surface defor-
mations without the need for mesh deformation and repeated CFD simulations for each design variable. An
adjoint solution uses information from the direct, or flow solution, to solve a new partial differential equa-
tion system which produces analytical gradients to infinitesimal deformations of the surface. The gradients
with respect to changes in freestream conditions can be found from the same adjoint solution. Adjoints
have been applied to scramjet designs in the past, specifically Wang6 et al. used a discrete adjoint for a
pressure-based functional on the solid surface of a scramjet inlet to accelerate Monte-Carlo characterization
of the probability of unstart.

The main contribution of this paper is the derivation and implementation of generalized continuous
adjoint boundary conditions for outflow-based objectives. Commonly derivations of the continuous adjoint
require a priori knowledge of the objective function desired. In this paper we show that the equations can be
found for a generalized objective limited to functions of the density, velocity, static pressure, and problems
where the outflow boundary remains undeformed. Implementing these boundary conditions for the case
where area-averaged quantities are used, and implementing the tools necessary to communicate the required
details of the externally defined objective function allows evaluating the surface sensitivity with respect to
thrust without requiring CFD evaluation downstream of the inlet. For this work a mixture of methods
will be used, summarized in Figure 1. These methods will be described further in Section II. This paper
builds on previous work,7 which used finite difference methods to evaluate the change in performance for
a thermoelasticaly deformed inlet for an objective function of interest to a similar design problem. It is
also based on work that derived the continuous adjoint boundary conditions for an objective of mass flow
rate.8 This work facilitates optimization of more complex objective functions, including objectives defined
in an external script. This paper will begin with a description of the background, the design problem
and geometry, followed by the methods used in this work including the derivation of the adjoint boundary
conditions (Section II.B). Results of various optimization problems will be presented, along with conclusions
related to their relevance for scramjet design.

I.A. Background

Hypersonic flow begins in the neighborhood of Mach 5, and is defined not with a specified Mach number
but as the flight regime where a number of physical phenomena become more significant. These phenomena
include thin shock layers where the shock lies very close to the surface of the vehicle, thick boundary layers
which interact with the shocks and a large entropy gradient, and the possibility of chemically reacting flow
and real gas effects.9 Combustion at supersonic speeds is more difficult to achieve, and issues with residence
time, sufficient mixing, and unstart become more significant. The inlets of scramjets need to compress the
air sufficiently, while maintaining low drag and high efficiency. Figure 1 identifies the stations 0-10 which will
be used as subscripts to describe the state of the flow at those locations. Several numbers are left out of this
figure for consistency with other engine types which have more components. This figure shows the expansion
component as a closed nozzle, however it should be noted that for many scramjet designs an expansion ramp
is used. This does not effect the analysis used in this work, as only the area and pressure of the expanded
flow is included.

There is ample existing work in the inverse design of inviscid inlets. A simple design is a two-dimensional
single ramp which forms two shocks- the first extending from the nose of the vehicle and meeting the
cowl, and the other returning the flow to the horizontal direction. A more efficient, but more difficult to
implement alternative is the Busemann inlet,10 which uses Mach waves to design a surface that isentropically
compresses the flow up to a conical shock that returns the flow to horizontal. Stream tracing11 techniques
take advantage of the lower stagnation pressure losses of the Busemann inlet with an inlet geometry that
can be more easily integrated. For example, a Rectangular to Elliptical Shape Transition12 (REST) inlet
transitions from a rectangular cross-section at the entrance to a circular cross-section at the combustor to
gain benefits from simpler vehicle integration and lower weight combustors. However, even a REST inlet
with boundary layer corrections may not achieve the designed performance13 due to the complex interactions
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of shocks and boundary layers in a complex internal hypersonic flow. This motivates the use of high fidelity
optimization where those complex interactions can be taken into account in the design process.

For gradient-based optimization, there are multiple options available to provide the gradients. The finite
difference method perturbs each design variable and re-evaluates the objective, while the continuous and
discrete adjoint methods provide surface sensitivities which can be projected onto the individual design
variables, requiring a single simulation in addition to the evaluation of the objective as opposed to requiring
one evaluation per design variable. The discrete adjoint differs from the continuous adjoint in several ways.
The discrete adjoint as implemented in the SU2 framework utilizes automatic differentiation of the initial
CFD code to find an exact derivative of the inexact functional. This has some advantages in obtaining results
that are generally much closer to finite difference results, however there are greater memory requirements
required due to the larger amount of information needed during calculation. The continuous adjoint, by
contrast, is sometimes more removed from finite difference and discrete adjoint result. The continuous adjoint
solves the discretization of the linearized fluid problem, while the discrete adjoint solves the linearization of
the discretized fluid problem. In other words, the continuous adjoint solves a problem defined by careful
implementation of problem defined by taking the adjoint of the original un-discretized fluid problem. The
discrete adjoint solves a problem defined by taking the adjoint of the already-discretized fluid problem.
Theoretically, these methods should be equivalent if the discretization of both adjoint methods and the
direct problem are perfect and if the numerical tricks such as limiters and other corrections were included
in the continuous adjoint. Some work14,15 has focused on making the discrete adjoint more efficient and
expanding its capabilities. In this work, I am approaching the problem from the other direction - by making
the boundary conditions of the continuous adjoint more general such that the numerical efficiency of the
continuous adjoint can be utilized without as much of a limitation on the objective function. Arian &
Salas16 have also explored expanding the limits of what objectives can be addressed by the continuous
adjoint, focusing on solid wall boundaries.

I.B. Design Problem

Several quantities of interest could be used for optimization. The choice of objective function will strongly
determine the outcome. For inlet optimization, the stagnation pressure is often maximized, and there are
several other options related to inlet performance such as the kinetic energy efficiency. Generally, the thrust
is not directly used as an objective function due to the relative complexity of evaluating the function. In this
work, we overcome that complexity through the generalized derivation of the adjoint boundary conditions
and the use of low fidelity methods for the properties downstream of the isolator. The uninstalled thrust
can be expressed as:

Fun = ṁ0c0M0

(
(1 + f)

M10

M0

√
T10

T0
− 1

)
+

A10

A0

(
P10

P0
− 1

)
(1)

In this equation M is the Mach number, P is the static pressure, T is the static temperature, f is the
mass flow fraction of fuel:air, c indicates the speed of sound, A is the cross-sectional area, and ṁ is the mass
flow rate. The quantities with subscript 0 are the freestream values, and the quantities with subscript 10
are values at the exit of the nozzle or expansion ramp, as shown in Figure 1.

Flight conditions are Mach 7.0, dynamic pressure of approximately 85 kPa, and Reynolds number of
approximately 5 × 106. These conditions correspond approximately to the HiFIRE flight 2 trajectory.4

These conditions have been chosen to be reasonably representative of current scramjet technology.

II. Models

This section will describe the Computational Fluid Dynamics (CFD) tools used, the derivation of the
adjoint equations and boundary conditions for the specific objective function used, the simulated geometry,
and the one-dimensional evaluation of thrust.

II.A. Computational Fluid Dynamics

The open-source CFD suite SU2, developed in the Aerospace Design Lab at Stanford University,17 was used
to generate flow solutions and the adjoint solution. A new boundary condition and other modifications were
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implemented in order to produce the continuous adjoint solution for generalized outflow-based objective
functions. The Euler Equations were used in verification and in most optimization cases. The Reynolds-
Averaged-Navier-Stokes (RANS) equations with the SA turbulence model was used for viscous simulations.
The second order ROE scheme was used.

SU2 uses the Finite Volume Method (FVM) to solve partial differential equations on unstructured meshes.
In the RANS equations, a turbulence model is used to account for the Reynolds stresses. The one-equation
Spalart-Allmaras18 and two-equation SST k-omega19 turbulence models are available. The continuous adjoint
equations are solved in a similar fashion, re-using methods implemented to solve partial differential equations
and the information generated by the flow solver.

II.B. Adjoint Derivation With An Arbitrary Outflow-Based Objective Function

A continuous adjoint problem, using information from the direct, or flow solution, solves a new partial
differential equation system which produces analytical gradients to infinitesimal deformations of the surface.
The gradients with respect to changes in freestream conditions can be found from the same adjoint solution.
The adjoint method requires a second PDE system and the derivation of boundary conditions that depend on
the objective function of interest. While a new set of boundary conditions is required for every new objective
function, this method provides gradients for an arbitrary number of design variables for approximately the
same computational cost as a single additional direct solution. By comparison, the finite difference method of
calculating gradients requires an additional direct solution for every additional design variable. A great deal
of literature exists on adjoints and their derivation. The method was introduced by Jameson,5 and further
work by Giles & Pierce,20 Castro21 et al., Hayashi22 et al., and Economon23 provide additional details for
the derivation and solution of adjoints. Papadimitriou & Giannakoglou24 previously derived the adjoint for
a total pressure objective function at an outlet. This work adds the derivation for a functional defined as an
arbitrary function of the averaged flow properties at the exit.

When an adjoint is derived for an objective function J defined on some surface other than a solid body,
it is called an off-body functional - for example, the mass flow rate ṁ defined on the exit plane of an isolator.
In these equations, U refers to the vector of conservative variables, ~F is the vector of convective fluxes, ~A is
the convective jacobian, V is the vector of primitive variables, and M is the transformation matrix between
the conservative and primitive variables. The jacobian and transfer matrices are expanded in the Appendix,
Equations 32-35. W is the vector of characteristic variables, which are constant along characteristics of
these equations. The transformation matrix L to characteristic variables is also shown in the Appendix. Ψ
is the vector of adjoint variables. The adjoint variables, Ψ = (ψρ, ψ

T
~ρv, ψρE)T are Lagrange multipliers for

the direct system of equations, in this case the Euler Equations. Ω represents the volume.
Our objective function,

J =

∫
Γe

gds, (2)

is defined as an integral over an outlet surface Γe. The function g will be treated as a “black box”. The
conservative variables U and primitive variables V are defined as:

U =


ρ

ρ~v

ρE

 , V =


ρ

~v

P

. (3)

Our goal is to find ∂J
∂S , where S is the surface to be designed. In order to find this value, we set up a

variational problem under the constraint that the variations of the flow variables must satisfy the direction
problem. This constraint is satisfied by setting the variation of the residual R(U) to zero. Defining the
Lagrangian for this problem and taking the first variation:

J = J −
∫

Ω

ΨTR(U)dΩ

δJ = δJ −
∫

Ω

ΨT δR(U)dΩ,

(4)
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where the adjoint variables Ψ are introduced as the Lagrange multipliers in the application of the constraint.
In order to solve this problem for the sensitivity ∂J

∂S , which will be equated to δJ
δS , we need to eliminate

dependence on δU . This is accomplished first through linearizing the governing equations and applying known
relationships between variables from the direct problem, and then through applying boundary conditions
that eliminate the remaining undesired variational terms. Linearizing the direct problem and its boundary
conditions and taking the first variation:

δR = ∇ · ~AδU = 0 in Ω

δ~v = −∂n(~v) δS on S

(δW )+ = 0 on Γ∞

δP = 0 on Γe where M < 1

(5)

In Equation 5, a constant pressure outlet is applied where the flow is subsonic, and the flow is tangent
to solid walls. We now expand the variation of the objective J ,

δJ =

∫
δΓe

g(U)ds+

∫
Γe

∂g

∂U
δUds (6)

Assuming that the outflow plane is undeformed such that the term δΓe can be set to 0:∫
δΓe

g(U)ds =

∫
Γe

g(U)ds−
∫

Γ′
e

g(U)ds = 0 (7)

This assumption simplifies the problem, and because the outflow boundary condition is defined in terms of
pressure it is now convenient to restate the equation in terms of the primitive variables:

δJ =

∫
Γe

∂g

∂U
δUds =

∫
Γe

∂g

∂V
δV ds (8)

Applying the Divergence Theorem to rewrite expression for δJ from Equation 4,

δJ = δJ −
∫

Ω

ΨT δR(U)dΩ∫
Ω

ΨT δR(U)dΩ =

∫
Γ

ΨT ~A · ~nδUds+

∫
S

ΨT ~A · ~nδUds+

∫
S

ΨT ~A · ~nδSds−
∫

Ω

∇ΨT ~AδUdΩ

δJ =

∫
Γe

∂g

∂U
δUds−

∫
Γ

ΨT ~A · ~nδUds−
∫
S

ΨT ~A · ~nδUds−
∫
S

ΨT ~A · ~nUδSds+

∫
Ω

∇ΨT · ~AδUdΩ,

(9)

where Γ refers to the open boundary (farfield, inlet, and outflow boundaries), S refers to the solid surface,
and Γe refers to the boundary over which J is calculated. Γe overlaps with Γ.

In order to find a solution for Ψ, we must make these equations independent of the variations δU . It is
convenient at this point to use the primitive variables δU = MδV . On the boundaries, we use the boundary
conditions from the direct problem to satisfy further conditions on δV - for example, at a subsonic outflow
boundary with a fixed pressure, the variation in pressure is no longer arbitrary (and must be 0), resulting
in a reduced number of equations that the adjoint variables must satisfy. The integral over the volume from
Equation 9 defines the PDE to solve, and the integrals over the boundaries of the domain (Γ, S) provide
the boundary conditions. A shorthand term will now be used for the momentum components of the adjoint
variables, ~ϕ = {ψρu, ψρv, ψρw}T . The adjoint problem can now be summarized as:

∇ΨT · ~A = 0 in Ω
∂g
∂V δV −ΨT ~A · ~nMδV = 0 on Γe

ΨT ~A · ~nMδW = 0 on open boundaries Γ 6= Γe

~ϕ · ~n = −ψρE~v · ~n on solid walls S,

(10)

where the primitive variables have been used for convenience. These relations eliminate the dependence on
δU from the final line of Equation 9. The remaining terms multiply δS and give the surface sensitivity.
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Generalized Outflow Boundary Conditions with Fixed Back Pressure

The equations on the outflow boundary will now be used to find the boundary condition governing the
adjoint variables for an arbitrary objective. Expanding the second line of Equation 10,


∂g
∂ρ
∂g
∂~v
∂g
∂P


T 

δρ

δ~v

δP

−


ψρvn + ~v · ~ϕvn + ψρEvn

(
~v2

2

)
ρ(~v · ~ϕ)~n+ ρvn~ϕ+ ρψρ~n+ ψρE

(
ρvn~v + ρ( c2

γ−1 + γ ~v
2

2 )~n
)

~ϕ · ~n+ ψρE(vn
γ
γ−1 )


T 

δρ

δ~v

δP

 (11)

Under subsonic conditions the pressure at the outlet is specified, and therefore, δP = 0. Eliminating the
dependence on the remaining, arbitrary, variations leads to:

∂g

∂ρ
−
(
ψρvn + ~v · ~ϕvn + ψρEvn

(
~v2

2

))
= 0

∂g

∂~v
−
(
~n

(
ρ(~v · ~ϕ) + ρψρ + ψρEρ

(
c2

γ − 1
+ γ

~v2

2

))
+ ~ϕ (ρvn) + ~v (ψρEρvn)

)
= ~0

(12)

The boundary condition at the outlet in terms of the energy adjoint variable reduces to:{
ψρ

~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
+

 −
(
∂g
∂~v · ~v

1
ρvn

)
+
(
∂g
∂ρ

2
vn

)(
∂g
∂~v

1
ρvn
− ~n∂g∂ρ

1
v2n

)  (13)

The remaining adjoint variable ψρE is interpolated from the volume solution, often by taking the value at
the nearest node in the volume (0th order interpolation). When the exit experiences supersonic flow, δP
becomes arbitrary, introducing an additional equation which can be solved to find the value of ψρE :

ψρe,M>1 =
γ − 1

v2
n − c2

(
∂g

∂ρ

1

vn
+
∂g

∂P
vn −

∂g

∂~v
· ~n1

ρ

)
(14)

For the viscous case,

ψT ~A · ~nδV + ψT δ


·
¯̄σ

¯̄σ · ~v

 · ~n+ ψT δ


·
·

µ2
totcp∇T

 · ~n+ ~n ·
(
Σϕ + ΣψρE~v

)
− ∂g

∂V
δV = 0, (15)

could be applied, however for this work the perturbations of the viscous terms will be assumed negligible.
This simplification is also assumed at farfield boundaries. This is a reasonable assumption because the
gradients in the direction of the normal vector are expected to be small relative to other terms.

Generalized Characteristic-Based Outflow Boundary Conditions

Although the fixed pressure outflow boundary is used in this work, and is the boundary condition currently
available in SU2, the alternative characteristic-based condition can be derived in the same way and will be
presented here. The significance of the characteristic variables is that they result from the diagonalization
of the Jacobians as shown in the Appendix. This allows us to derive the adjoint boundary conditions
consistent with characteristic-based (Reimann) conditions in the direct flow problem. Because the supersonic
case results in all characteristics exiting in the direct problem, and all entering in the adjoint problem, the
resulting values of the adjoint variables will be the same. The difference is only relevant for the subsonic case
and inside the boundary layer of viscous problems. Transforming the second equation of Equation Set 10 to
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be in terms of characteristic variables W :

0 = ΨT ~A · ~nMLδW − ∂g

∂U

T

MLδW = ΨT ~A · ~nMLδW − ∂g

∂V

T

LδW

= δw1

(
−∂g
∂ρ

+
1

2
vn
(
2ψρ + ~v2ψρe + 2~v · ~ϕ

))
+δw2

(
∂g

∂~v
· ~n+ vnρ(~ϕ× ~n+ ψρe~v × ~n)

)
+δw3

(
−2

4c

(
c
∂g

∂~v
· ~n+ c2

∂g

∂P
ρ+

∂g

∂ρ
ρ

)
+

ρ

4c

(
ψρe

(
2c3γ

γ − 1
+ 2c2(

vnγ

γ − 1
) + 2cv2

n

)
+ (vn + c)

(
2c(ϕn) + 2ψρ + ~v2ψρe + 2~v · ~ϕ

)))
+δw4

(
−2

4c

(
−c(∂g

∂~v
· ~n) + c2

∂g

∂P
ρ+

∂g

∂ρ
ρ

)
+
ρ

4c

(
ψρe

(
−2c3γ

γ − 1
+

2c2vnγ

γ − 1
− 2cv2

n

)
+ (vn − c)

(
2ψρ − 2cϕn + ~v2ψρe + 2~v · ~ϕ

)))

(16)

For the subsonic case, δw4 = 0 because that characteristic variable is associated with the negative
characteristic speed u− c from the direct problem, and so it is positive and exiting the volume in the adjoint
problem. The remaining characteristics are entering the volume in the adjoint problem, and so their values
are arbitrary. Setting the coefficients for the variation of the first three characteristics to 0 and solving for
three of the adjoint variables:

{
ψρ

~ϕ

}
= ψρe

{
cvn
γ−1 + ~v2

2

−~v − ~n c
γ−1

}
+


1

c+vn

(
∂g
∂ρ

c+2vn
vn
− cvn ∂g∂P −

∂g
∂~v ·~v
ρ − c(~v×~n)·( ∂g∂~v×~n)

ρvn

)
~n

c+vn

(
∂g
∂P c−

∂g
∂ρ

1
vn
− ∂g

∂~v · ~n
c
vnρ

)
+ ∂g

∂~v
1
ρvn

 (17)

For the supersonic case, all of the characteristics of the adjoint problem are entering the volume, and so
the value of its variation δw4 is now arbitrary. This means that in order to solve for the adjoint variables the
coefficient on this term must be set to zero, which provides an equation we can now solve for the remaining
adjoint variable, ψρe:

ψρe,Me>1 =
γ − 1

v2
n − c2

(
∂g

∂ρ

1

vn
+
∂g

∂P
vn −

∂g

∂~v
· ~n1

ρ

)
(18)

Note that the result for the supersonic case is identical. The supersonic solution for either boundary condition
reduces to:

ψρ

~ϕ

ψρe

 =


(
∂g
∂ρ

)
−2c2+4v2n+~v2(γ−1)

2vn(v2n−c2) +
(
∂g
∂~v · ~n

)
2c2+~v2(γ−1)

2(v2n−c2)ρ +
(
∂g
∂~v · ~v

)
−c2+v2n

vn(v2n−c2)ρ +
(
∂g
∂P

)
−vn(2c2+~v2(γ−1))

2(c2−v2n)(
∂g
∂ρ

)
−~n−~v(γ−1)
v2n−c2

+
(
∂g
∂~v · ~n

)
~nc2+~vvn(γ−1)
vn(v2n−c2)ρ +

(
∂g
∂~v

)
v2n−c

2

vn(v2n−c2)ρ +
(
∂g
∂P

)
~nc2+~vvn(γ−1)

c2−v2n(
∂g
∂ρ

)
γ−1

vn(v2n−c2) +
(
∂g
∂~v · ~n

)
1−γ

ρ(v2n−c2) +
(
∂g
∂P

)
vn(γ−1)
v2n−c2


(19)

Other Boundaries

At the inlet to the computational volume, boundary condition is defined by
∫

Γi
(ΨT ~A · ~nδU)ds = 0 for the

adjoint problem. In supersonic flow, all of the characteristics are exiting, leading to the condition that the
adjoint variables are interpolated from the volume solution as the iterative solution progresses. At farfield
boundaries, we assume that the variations of the conservative variables, δU are negligible, which is consistent
with the boundary condition of the direct problem.

After application of the boundary conditions that eliminate the dependence on the variation in the
conservative variables δU , and assuming only normal deformations, the remaining terms on the surface in
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Equation 9 can be reduced to:

δJ =

∫
S

∂J

∂S
δSds

∂J

∂S
= (∇ · ~v)(ρψρ + ρ~v · ψ ~ρv + ρHψρE) + ~v · ∇(ρψρ + ρ~v · ψ ~ρv + ρHψρE)

(20)

This defines the surface sensitivity, ∂J
∂S , which is multiplied by the normal deformation δS. A full derivation

of Equation 20 can be found in work by Castro.21 The surface sensitivity is defined at every point on
the surface assuming a continuous surface and continuous solution to the direct problem. In theory, the
application of the divergence theorem during the derivation should require that discontinuities like shocks in
the flow should be treated differently, e.g., by sensing the shock location and applying an additional boundary
condition along that surface. In practice, as shocks are not true discontinuities within the numerical flow
solution, this is not necessary, and gradients without a shock correction match well with finite difference
results. It has also been assumed that viscous perturbations at the outlet, inlet, and farfield boundary
conditions are negligible.

This derivation has focused on the inviscid problem. In the viscous problem, the boundary conditions on
the surface and the equation for the surface sensitivity are modified. At inlet and outlet boundary conditions
the viscous perturbations are assumed negligible, and these boundary conditions do not change. The equa-
tions defining these boundary conditions and the viscous surface sensitivity can be found in Reference [25].
Since the viscous perturbations at the outlet are neglected in this work, the boundary conditions developed
here remain unchanged.

II.C. External Outflow-Based Objective Function

Figure 2: Flow chart showing relation of external
script and CFD.

So far, the objective function has been treated en-
tirely as a black box. This section will describe
the low fidelity models used to model the flowpath
downstream of the isolator. Area averages over the
outflow of the isolator were used to link the CFD
model to the one-dimensional or control volume
models at Station 3 shown in Figure 1. Flux aver-
aging,26 which preserves the conservative variables,
has been used in previous work.8 However, area av-
eraged values are more amenable to the derivation of
the adjoint boundary conditions. The constant pres-
sure combustion analysis was used for the results
shown in this work because it produced conserva-
tive results relative to the constant area analysis for
an initial design case, and its simplicity was more
suited to testing the functionality of the generalized
adjoint boundary conditions. The objective is ex-
pressed as a function of the averaged outflow values
V,

J = f(V̄ )

V̄ =

∫
V ds∫
ds

(21)

And so, the variation of the objective becomes:

δJ =

∫
δV

∂f

∂V̄

∂V̄

∂V
ds =

∂f

∂V̄

1∫
ds

∫
δV ds, (22)

where the term ∂f
∂V̄

is a constant, and the term δV is under the integral it can vary over the outflow boundary.
We now need to relate this to the generalized outflow objective g as defined in Equation 2, which conveniently
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results in constant values for the required gradients:

∂g

∂V
=

1

Ae

∂f

∂V̄
(23)

Figure 2 illustrates the flow of information during the optimization loop. The design variables ~x are input
into both the direct CFD solver and into the external/outside function, which also requires the flow solution
to provide the gradients required for the adjoint solution and the evaluation of the objective function defined
in the outside function. Because this “outside function” is implemented as a Python script, its details are
very flexible, and new objective functions can be implemented without any need to recompile the SU2 C++
code. The gradients required for the boundary condition are found via finite difference within the python
script, and passed into the configuration information for the adjoint simulation. The gradients can also be
set manually within the configuration file.

Combustion Model

At station 4 of the flowpath through the engine, the air enters a combustion chamber. Conventionally, at
this point fuel is mixed with the air, although in scramjet engines fuel may be added further upstream due
to the greater difficulty of achieving complete mixing in the length of the combustor. Methods of mixing
and adding fuel along the inlet surface have been studied by Turner27 and found not to have a strong effect
on the inlet performance, so for this work we will assume that the fuel and air are sufficiently mixed. High
fidelity simulations exist for combustion processes,28,29 as well as experimental results.30 In this work, a
0th order method will be used for the combustion and expansion processes. Since the adjoint boundary
conditions have been derived such that the downstream model can be treated as a “black box,” it would be
theoretically possible, albeit more computationally expensive, to use higher fidelity methods to provide the
values needed by the adjoint boundary conditions.

Constant pressure combustion assumes that the exit static pressure of the combustion chamber is equal
to the entrance static pressure, P3 = P4. Using the conservation of, respectively, momentum, conservation
of energy, and conservation of mass:

u4 = u3

{
1 + f

ufx
u3

1 + f
−

Cf
Aw
A3

2(1 + f)

}

T4 =
T3

1 + f

{
1 +

1

CpbT3

[
ηbfhPR + fhf + fCpbT

0 +

(
1 + f

u2
f

u2
3

)
u2

3

2

]}
− u2

4

2Cpb

A4

A3
= (1 + f)

T4

T3

u3

u4

(24)

Some values in these equations will have assumed values: the fuel injection axial velocity ufx and the fuel
injection total velocity uf will be assumed negligible relative to u3. The values of the remaining parameters
can be found in the Appendix, Table 2.

Expansion Model

Adiabatic expansion to freestream pressure was assumed for the calculation of station 10 values based on
the station 4 values computed from the combustion model. An expansion efficiency ηe and the pressure ratio
P10

P0
are used in these equations. Ideal performance of the nozzle would occur with P10

P0
= 1.0, and in fact this

is assumed for optimization results where the parameters controlling the nozzle are not varied. However, for
scramjets this would require an unfeasibly large nozzle, and so a ratio greater than 1.0 would be expected
in realistic designs. The equations giving the properties at station 10 (the nozzle exit) as found in Heiser &
Pratt31 are:

T10 = T4

{
1− ηe

[
1−

(
P10

P0

P0

P4

)(R/Cpe)
]}

u10 =
√
u2

4 + 2Cpe(T4 − T10)

A10

A0
= (1 + f)

P0

P10

T10

T0

u0

u10

(25)
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II.D. Initial Design Geometry

A simple two-dimensional geometry used as an initial point for optimization. This geometry was designed
using oblique shock equations32 such that the shock resulting from the angle of the ramp meets the cowl
lip. The height of the isolator and length of the cowl are designed such that the second shock impinges at
the end of the ramp, leading to horizontal flow at the isolator. The parameters of this design are a desired
static pressure ratio of 20.0, a design Mach number of 7.0, and an inlet length of 1.0 meters. The geometry
is shown in Figure 3. The nose and cowl have been filleted to have a radius of 0.0005 meters in order to
avoid sharp edges. Sharp edges, particularly when insufficiently resolved in the mesh, have been observed to
result in poor quality results of the adjoint solution.

Figure 3: Baseline geometry used as initial point in optimization.

At Mach 7 in inviscid flow, the leading shock very nearly meets the cowl lip, and small amount of flow
spillage occurs around the outer edge of the cowl due to the rounded edges of the geometry. As mass flow is a
component of thrust, this is generally corrected by minor geometry modifications during optimization. The
shock reflects off the cowl to meet the corner between the upper wall of the inlet and the isolator. A weak
reflected shock can be observed within the isolator. Ideally, the flow would be turned exactly parallel to the
isolator walls with no shocks within the isolator, and this weak shock train is due to the rounding of sharp
edges of the geometry and numerical effects. In practice, a shock train would be expected in the isolator, as
the idealized inviscid flow would not naturally occur. Optimization was also conducted on a three-dimensional
geometry, shown in Figure 4. This geometry is an extrusion of the two-dimensional geometry shown in Fig-
ure 3. The total width is 0.1 m, with the simulated volume using a symmetry plane and 1/2 the total width.

Figure 4: Three-dimensional initial geometry.

Free-Form Deformation Variables

A Free-Form Deformation (FFD) strategy has also been
adopted in both two and three dimensions, which has
become a popular geometry parameterization technique
for aerodynamic shape design.33–35 In FFD, an initial box
encapsulating the object (rotor blade, wing, fuselage, etc.)
to be redesigned is parameterized as a Bézier solid. A set
of control points are defined on the surface of the box,
the number of which depends on the order of the chosen
Bernstein polynomials. The solid box is parameterized
by the following expression:

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)Bmj (v)Bnk (w), (26)
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where u, v, w ∈ [0, 1], and Bi is the Bernstein polynomial
of order i. The Cartesian coordinates of the points on the surface of the object are then transformed into
parametric coordinates within the Bézier box.

The control points of the box become design variables, as they control the shape of the solid, and thus the
shape of the surface grid inside. The box enclosing the geometry is then deformed by modifying its control
points, with all the points inside the box inheriting a smooth deformation. Once the deformation has been
applied, the new Cartesian coordinates of the object of interest can be recovered by simply evaluating the
mapping inherent in Equation 26. An example of FFD control point deformation appears in Figure 5.

(a) Original inlet geometry and FFD bounding box with control points at the intersection of
the black lines.

(b) Deformed inlet after displacement of the FFD control points near the compression ramp.

Figure 5: An example of the FFD technique applied to the two-dimensional inlet geometry.

II.E. Other Functionality Implemented in Support of This Work

Previously two-dimensional simulations experienced undesireable behavior during deformations near sym-
metry planes. In order to counteract this, code was implemented to constrain the symmetry boundary
condition in two-dimensional simulations to deform only in the line of the boundary. Building on the work of
Albring,15 the necessary code modifications were implemented in this work to evaluate the discrete adjoint
of outflow objectives of average total pressure, average static pressure, and mass flow rate. This allows
comparison between the continuous and discrete adjoint computation of the pressure and mass flow rate
objectives. Evaluating the discrete adjoint of the chain-rule based objective requires further work, specif-
ically the modifications necessary to automatically differential the PythonTM-based model of the flowpath
downstream of the inlet and isolator. A “Custom” design variable was also implemented to allow the use of
additional design variables within the external script.
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III. Results

In the preceding sections, the adjoint formulation for an arbitrary objective was derived, which facilitates
the use a greater range of objective functions. The models used to estimate the thrust and other factors, for
use as objective functions, were also presented. In this section, the gradients obtained using these equations
will be checked against other methods: finite difference and discrete adjoint. The results of optimization
studies will then be presented, including optimization results for simple objectives, a Pareto Front used
to choose appropriate weighting for a two-objective problem, and results for a three-dimensional geometry
optimized for a two-objective problem.

III.A. Verification of Outflow-Based Adjoint

For this work, boundary conditions for the continuous adjoint had been developed, and in this section the
results of the continuous adjoint will be compared to results obtained using finite differences and/or the
discrete adjoint. The discrete adjoint will only be included in comparisons where the objective is one of the
area-averaged outputs from the CFD solution, since the capability to use external functions with the discrete
adjoint is not implemented.

Verification Geometry

A simpler geometry was used to facilitate a grid refinement study, provide a smaller problem to facilitate run-
ning the larger number of CFD cases required for finite difference evaluations, and which matches geometry
and flow conditions presented in literature.36 The flow conditions are Mach 6.0, 470◦ K total temperature,
and 10 × 106/m Reynolds number. The geometry is a 7.5◦ ramp 40 mm downstream of the leading edge.
For this problem we assume a symmetry plan on the upper boundary, and the objectives will be defined on
the right-hand plane of the volume shown in Figure 6. The FFD box used is also shown in Figure 6. The

Figure 6: Geometry used for verification. Design variables are numbered at the associated FFD control
point.

design variables are the 7 control points labelled 0 - 6.

Area-Averaged Static Pressure

Figure 7 compares the gradient calculated for area-averged static pressure using three different methods. The
finite difference and discrete adjoint results are very close, as is expected. The continuous adjoint gradient
is more removed from the finite difference and discrete adjoint results.

During the operation of the discrete and continuous adjoint for these cases, the memory usage of the
computer cluster was observed. The average virtual memory per node was 3.6 times higher for the discrete
adjoint problem on the same mesh and objective.
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Design Variable

Figure 7: Gradient of area-averaged static pressure at the outflow of the isolator.

External Objective Function

Figure 8 compares the gradient of thrust defined in an external PythonTMscript using the continuous adjoint
and finite difference methods on the ramp case shown in Figure 6. These results show a match with the finite

Figure 8: Gradient of function defined in an external script.

difference consistent with the match found for objectives defined within the C + + code, and so it appears
that this method is appropriately finding the surface sensitivities for the external function.

III.B. Single-Objective Optimization: Thrust

To demonstrate the abilities of the generalized outflow-based adjoint for single-objective optimization, the
thrust as defined in Equation 1 will be maximized;

min
~x
J(~x) =− Fun

subject to: − 0.2 ≤ ~x ≤ 0.2
(27)

The design variables ~x are FFD control points, as illustrated in Figure 5.
The uninstalled thrust Fun is calculated by passing the area-averaged quantities into a PythonTMscript

which uses the models described in Section II.C to calculate the properties of the flow as it passes through
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the combustion and expansion components. The resulting station 10 properties are used to find the thrust.
The gradient of this value is then found by perturbing the station 3 quantities within the script to find the
gradients of the function with respect to the primitive variables. These gradients are then passed into the
continuous adjoint problem to find the surface sensitivities, which are projected onto the design variables ~x.
This would not be feasible without the generalized boundary conditions derived in this work.

2D Invsicid

The results in this section used thrust calculated using area-averaged outflow conditions as inputs into the
control-volume analysis using constant pressure in the combustor and adiabatic expansion to freestream
pressure. Figure 9 shows the flow at the initial point, and Figure 10 shows the flow after 6 major iterations
and a 16% increase in thrust. Classically, we would expect designs to seek a weaker shock, making the initial

Figure 9: Initial design, inviscid flow at Mach 7.0

Figure 10: Geometry optimized for maximum thrust, inviscid flow at Mach 7.0

point in this optimization problem favorable. However, this solution has produced a stronger shock - and
signficantly increased the thrust. While this particular geometry would cause some difficulty in integration
into a larger vehicle and would likely suffer from separation at the nose in a viscous flow, the result of a
stronger shock is still relevant. In order to prevent this extreme deformation it would be reasonable to use
tighter bounds on the control points shown in Figure 5. This geometry has a lower compression efficiency, and
yet a larger overall efficiency, as shown in Table 1. This is achieved due to the increase in static temperature
and pressure at the entrance to the combustor, which increases the performance downstream of the inlet and
outweighs the decreased inlet efficiency.
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2D Viscous

The simulation of viscous flow is generally more computationally costly than inviscid flow. Due to the
additional time required, it is beneficial to start from an initial point determined by the inviscid optimization
rather than the initial straight ramp. Due to the large deformation applied during the inviscid optimization
as shown in Figure 10, the viscous solution was not able to converge using the full deformation. Therefore,
an initial point using 50% of the inviscid optimized geometry was used for optimization of thrust in viscous
flow. Already, the thrust is improved by this deformed geometry relative to the original straight geometry.
Relative to the viscous thrust on the straight geometry, the thrust has improved by 16.88%. The thrust

Figure 11: Initial design for viscous optimization of thrust, Mach 7.0

Figure 12: Geometry optimized for maximum thrust, viscous flow at Mach 7.0

is improved relative to the initial (predeformed) design shown in Figure 11 by 4.2 %, and relative to the
straight initial geometry in viscous flow by 21 %. Qualitatively, the optimized geometry in Figure 12 has
lengthened and straightened the front portion of the nose, effectively resulting in a sharper shock. It has also
moved this shock such that it meets the cowl lip. As in the inviscid optimization problem, the optimizer has
sacrificed compression efficiency in favor of higher thrust and therefore higher overall efficiency. It should
also be noted that while dissociation effects were not included in this analysis, the temperature at the end
of the inlet in the optimized case is 1333.5◦K, which is cause for some concern as air begins to dissociate
around 2000◦K. Consideration of the dissociation of air within the combustor may be considered in future
analyses. It is also interesting to note that a large separation region has been produces near the corner
between the inlet and isolator where the reflected shock meets the wall. It would normally be assumed
that such a separation region would detrimentally effect the inlet performance, but since in this case lower
inlet efficiency is actually beneficial, to a certain extent, and assuming that the distortion of the flow is not
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too extreme, this separation region may be acceptable. Considering that fuel mixing on the inlet has been
considered for scramjets,27 such a separation region may in fact be useful to the design.

III.C. Multi-Objective Optimization

The previous section showed the results of optimization with a single objective function. Although interesting,
more complex optimization problems are now possible due to the implementation of generalized boundary
conditions. The previous results assumed ideal expansion, which results in an infeasibly large nozzle area, on
the order of 10× the capture area. In addition to hampering integration of the engine into the vehicle design,
this large nozzle exit area also increases the structural weight. A reasonable multi-objective optimization
will be comprised of both the thrust of the engine and the nozzle exit area. The nozzle exit area depends
on the conditions at the end of the combustor, as well as on the extent to which the nozzle is under- or
over-expanded. In order to add under-expansion as a design variable, additional changes were needed to the
code to add the custom design variable of P10

P0
within the python script that calculates the thrust. All the

results in this section are inviscid.

Overall Efficiency & Nozzle Area

The overall efficiency is defined as:

ηO =
FunV0

ṁfhPR
(28)

The weighting function used for multi-objective optimization of a combination of the nozzle exit area and
the overall efficiency is:

min
~x,
P10
P0

J1(~x,
P10

P0
) =− w1ηO + w2

A10 − 2.65

2.65

subject to: w1 + w2 = 1

− 0.2 ≤ ~x ≤ 0.2

1 ≤ P10

P0
≤ 5

(29)

The vector ~x is the set of FFD design variables. The area is normalized by its value at an initial point
such that it will be on the order of 1.0. The initial point of the P10

P0
design variable was 3.0, and the initial

deformations ~x were 0.
Figure 13 shows the resulting optimized geometries with a selection of values for w1. The lengths of the

combustor and nozzle are arbitrary - only the exit area is determined during this analysis. Very little change
has occurred in the shape of the inlet, possibly due to there being no benefit to increasing ṁ in this objective
function. In terms of A10, as should be expected, a larger weight on ηO results in a large exit area and a
larger weight on A10 results in a smaller area.

Thrust & Nozzle Area

The objective function used for a second multi-objective optimization is:

min
~x,
P10
P0

J2(~x,
P10

P0
) =− w1

Fun

12000
+ w2

A10 − 2.65

2.65

subject to: w1 + w2 = 1

− 0.2 ≤ ~x ≤ 0.2

1 ≤ P10

P0
≤ 5

(30)

This equation is a weighted sum of the thrust (Fun) and the exit area, both normalized by their approximate
value at the initial point such that the two objectives are both on the order of 1.0. A scaled thrust rather
than overall efficiency is for comparison with the previous results. The initial point of the P10

P0
design variable

was 3.0, and the initial deformations ~x were 0.
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Figure 13: Multi-objective optimized geometries for ηo and A10 at a selection of weights. Nozzle area is
symmetric about the centerline of the combustor. 1/2 area is shown for visualization.

Using the thrust rather than the overall efficiency resulted in a larger deformation applied to the inlet
geometry, shown in Figure 14a. The different function has also changed the resulting nozzle areas. The
lengths of the combustor and nozzle are arbitrary in these plots. Inspecting the geometry changes of the
inlet in Figure 14b, although the nozzle area increases monotonically as the weight on the area portion of
the objective decrease, the shape of the inlet varies with a similar general shape but without any easily
recognized pattern as the weights on the objectives change. The individual optimization problems are
generally converged, and the thrust increases monotonically, however the static pressure and temperature,
as well as the stagnation pressure do not follow such a simple pattern, even between designs that have the
same value of P10

P0
. This highlights the nonlinearity of this problem. The exit area is effected both by the

specified pressure ratio as well as by the outflow velocity and pressure at the end of the isolator.
A Pareto Front shown in Figure 15 was constructed using the two objective functions described, and

shows the trade-off between overall efficiency ηO and the exit area A10. The knee of this plot appears to be
at approximately ηO ≈ 0.35, A10 ≈ 4×A0, which is associated with a weight of w1 ≈ 0.6. More information
such as the rate at which structural weight increases with respect to nozzle area would likely change this
trade-off, particularly as the weight would affect the lift-induced drag. The overall efficiency at this choice of
weights is reasonable as well. Higher efficiency for smaller areas may be possible with more design variables
such as the inlet contraction ratio and/or three-dimensional effects, although these values are fairly consistent
with literature.37 As expected, although very high efficiencies may theoretically be possible, they come at the
cost of unreasonably large nozzles. Practical designs generally include expansion ramps instead of enclosed
nozzles to allow external expansion, however, the external expansion is then limited by the length of that
ramp.

3D Inviscid

Based on the results of the two-dimensional multi-objective optimization, the three-dimensional geometry
shown in Figure 4 was optimized for the objective shown in Equation 30, which is a balance of thrust Fun
and exit area A10. A weighting of w1 = 0.5 was used, and an initial pressure ratio of P10

P0
= 3. This

equation was adjusted to account for the span of 0.1 m by multiplying the constants by 0.1. This section
will describe the results of this optimization. The design variables are illustrated in Figure 16. There are
25 FFD design variables, with axial deformations near the nose, vertical deformations along the ramp, and
spanwise deformations near the outer edge of sidewall. The first step of the optimizer is shown in Figure 17.
As with the two-dimensional case, the overall efficiency and thrust are increased. Due to the weighting
chosen, the nozzle area has increased slightly. The overall efficiency and nozzle exit area are similar to the
values produced with the same weights in the two-dimensional case. However, the compression efficiency
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(a) Inlet and nozzle shapes. Nozzle area is symmetric
about the centerline of the combustor. 1/2 area is shown
for visualization.

(b) Inlet shapes detail comparing optimized geometries at
various weights.

Figure 14: Multi-objective optimized geometries for Fun and A10 at a selection of weights.

Figure 15: Pareto Front with results from two multi-objective optimizations.
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Figure 16: Three-dimensional optimization design variables. Arrows indicate the direction, with the variables
on the symmetry plane shown in grey.

increases slightly, contrary to the two-dimensional results. This may be due to the larger number of design
variables, to including the cowl in the available deformations, or due to three-dimensional effects. The static
temperature and pressure at the end of the isolator are raised, which raises the efficiency of the combustor,31

similar to the two-dimensional case. This also increases the pressure at the end of the nozzle, which has two
competing effects: the thrust would increase if the nozzle area is kept constant, and a larger area ratio will
result if the ratio P10

P0
is constant.

X

Y

Z

Figure 17: Three-dimensional optimization results, superimposing optimized geometry in grey on initial
geometry.
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III.D. Results Summary

Results of several of the cases discussed above are shown in Table 1. Some of the results to note are that
the inviscid optimization achieves a significant improvement over the baseline, and that an improvement
can be seen in the viscous case with 1/2 of the deformation from the inviscid optimization applied. In the
multiobjective results, the exit area can be balanced against the uninstalled thrust. It should be noted that
for scramjets an expansion ramp is often used, such that the exit area considered includes external expansion
- this means that a larger exit area may still be feasible. The compression efficiency shown in Table 1 is
defined as:

ηc =

T3

T0
−
(
Pt0
Pt3

)(γ−1)/γ

T3

T0
− 1

, (31)

where Pt is the stagnation pressure. Usually this efficiency is defined over the inlet31 (up to station 2 in
Figure 1), however as the CFD in this work included an isolator portion this efficiency will be defined here
using the station 3 values.

Case Geometry ηO ηc
A10

A0

P3

P0

P10

P0
T3 [◦ K] Inlet Sur-

face Drag
[N]

Fun [N]

1. Inviscid Baseline Figure 9 0.5886 0.8722 9.467 21.136 1 668.928 2.56E+003 1.77E+004

2. Inviscid Opti-
mized for Thrust

Figure 10 0.6839 0.8147 8.73 58.147 1 1377.14 7.23E+003 2.06E+004

3. Viscous Baseline N/A 0.597 0.8285 9.355 25.54 1 790.91 3.36E+003 1.79E+004

4. Viscous Flow,
deformed by 50%
of inviscidly opti-
mized result

Figure 11 0.6309 0.82 8.969 39.795 1 1041.55 4.90E+003 2.10E+004

5. Viscous Opti-
mized for Thrust

Figure 12 0.658 0.8108 8.774 58.079 1 1333.46 7.04E+003 2.19E+004

6. Inviscid Multi-
Objective J2, w1 =
0.1

Figure 14a 0.3189 0.8086 2.962 42.853 5 1195.2 6.28E+003 9.60E+003

7. Inviscid Multi-
Objective J2, w1 =
0.5

Figure 14a 0.4348 0.8346 5.4970 29.923 2.2274 869.4380 6.28E+003 1.31E+004

8. Inviscid 3D
Baseline

Figure 17 0.3481 0.8800 4.5364 20.193 3.000 643.0190 1.27E+002 1.16E+003

9. Inviscid 3D Op-
timized for J2

Figure 17 0.4244 0.8888 5.2229 22.715 2.404 708.4072 1.36E+002 1.41E+003

Table 1: Summary of Performance Results. Forces and areas for two-dimensional results are per-unit-span.

IV. Conclusion

A few conclusions can be found from Table 1. First of all, when optimizing for thrust, which includes
the low-fidelity performance of combustion and expansion components, the efficiency of the compression
component is actually decreased. In the first two rows of Table 1, we see that a decrease of 6% on the
compression efficiency is correlated with an overall efficiency increase of 16% when optimizing the thrust. In
Figure 10, we see that this is achieved by a dramatic, and potentially infeasible shape change. In fact, when
simulating that geometry with viscous flow, the CFD solver was not able to converge, motivating the use of
50% of the deformation in Case 4 of Table 1. Optimization under viscous conditions shows similar results,
an increase in overall efficiency and decrease in compression efficiency. The increase of the static pressure
ratio when optimizing for thrust is consistent with work by Smart37 which evaluated the level of compression
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needed for increased performance using a lower fidelity model of the inlet and higher fidelity models of other
components. Once multiple objectives are included, along with the addition of the design variable P10

P0
, as

seen cases 6 and 7 from Table 1, optimizing with a larger weighting on the nozzle area objective (case 6,
w1 = 0.1) results in a design that has lower overall efficiency as well as lower compression efficiency, but
a more reasonable nozzle area. It should also be noted that as scramjets often use expansion ramps which
allow external expansion, the area at station 10 would be the effective area of the expanding gas plume at
the end of the expansion ramp rather than the enclosed area of a physical nozzle, making a larger area more
feasible. Overall, these results show that the inclusion of the entire flowpath produces optimized solutions
which are significantly different from optimizing for the compression component alone, and that the inclusion
of multiple objectives further alters the design of the inlet. When the overall efficiency, which scales the
thrust by mass flow rate and freestream values, was used in the objective function, very little change was
seen in the inlet geometry. As it is know from the results of optimizing with thrust unscaled by mass flow
rate that higher overall efficiency values are possible, the initial geometry may be a local minimum and/or
the problem is sensitive to objective scaling and the chosen initial point.

A new generalized boundary condition for the continuous adjoint method has been presented, which
facilitates more flexible outflow-based objectives. This formulation allows the continuous adjoint to be used
for a much larger range of objectives than previous. Most often the continuous adjoint is used with a single
surface-based objective, and sometimes a pressure-based outflow objective. While the continuous adjoint
is still limited to objectives which allow the elimination of arbitrary variations during the derivation of
the boundary conditions, the equations presented in this work greatly simplify the process of finding those
boundary conditions for functions based on an integral over the outflow surface. Additionally, by treating this
function as a “black box” in the implementation of the boundary condition, the adjoint problem can be used
with a variety methods downstream of the outflow boundary. That is, while a simple model implemented in
PythonTMhas been used in this work, the same methods could also be used with higher fidelity models or
with empirical models, as long as the required gradients are provided. Similar functionality may be possible
with the discrete adjoint in SU2, but only with additional implementation and the potentially increased
computational cost of that method.

This adjoint formulation was used to optimize a scramjet inlet geometry with respect to thrust and
nozzle exit area objectives. Now that the ability to use a wider range of objective functions has been shown,
more complex multiobjective problems can be addressed without changes to the compiled C++, as long as
the problem is limited to outflow-based objectives. Future work will focus on expanding the capabilities of
the adjoint method to be compatible with combinations of wall-based and outflow-based objectives, and to
remove the limitation of functional dependence on only area-averaged quantities. In additional, consideration
of unstart and gas dissociation may be included in the analysis of the flowpath downstream of the inlet.
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VI. Appendix

VI.A. Assumed Constants & Parameters

Table 2 summarizes the various parameter values assumed for the models used in this work. Many of the
values are drawn from Heiser & Pratt.31

Parameter Symbol Value

Expansion Efficiency ηe 0.9

Burner Efficiency ηb 0.8

Constant pressure specific heat
in burner and nozzle

Cpe = Cpb 1.51× 103 J/kg K

Reference Temperature T 0 222.0◦ K

Skin friction term
CfAw
2A3

0.02

Enthalpy of Hydrogen Fuel hf 12.1× 107 J/kg

Fuel mass fraction f 0.0295

Product of mass fraction and
combustion product enthalpy

f × hPR 3.510× 106 J/kg

Table 2: Assumed Parameters

VI.B. Jacobians & Transfer Matrices

This section contains details of the Jacobian and other terms used in the derivation of the adjoint equations
and boundary conditions. The Jacobians an transformation matrices are found in Hirsch32 and are shown
in the two dimensional form here.

Jacobian matrix for two dimensional Euler Equations:

Ax =
∂Fx
∂U

=


0 1 0 0

−u2 + 1
2

(
u2 + v2

)
(γ − 1) −u(−3 + γ) −v(γ − 1) γ − 1

−uv v u 0

−c2u
(γ−1) +

u(u2+v2)(2−γ)

2
c2

γ−1 −
−v2+u2(−3+2γ)

2 −uv(γ − 1) uγ

 (32)

AxM =
∂Fx
∂U

∂U

∂V
=
∂Fx
∂V

=


u u2 uv 1

2uv
2

ρ 2ρu ρv ρ(H + u2)

0 0 ρu ρuv

0 1 0 uγ
(γ−1)

 (33)

Transformation matrix M in two dimensions:

M =
∂U

∂V
=


1 0 0 0

u ρ 0 0

v 0 ρ 0
~v2

2 ρu ρv 1
γ−1



M−1 =
∂V

∂U
=


1 0 0 0

−u/ρ 1/ρ 0 0

−v/ρ 0 1/ρ 0
~v2

2 (γ − 1) −u(γ − 1) −v(γ − 1) (γ − 1)


(34)
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Diagonalization of the Euler Jacobian:

∆ = L−1M−1
(
~A · ~n

)
ML

L =
∂W

∂V
=


1 0 ρ

2c
ρ
2c

0 ny
nx
2

−nx
2

0 −nx ny
2

−ny
2

0 0 ρ
2c

ρ
2c



∆ =


~v · ~n 0 0 0

0 ~v · ~n 0 0

0 0 (~v · ~n+ c) 0

0 0 0 (~v · ~n− c)



(35)
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