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Abstract. In this paper, we present optimization techniques that are crucial to un-
lock parallelism and vectorization in modern computational fluid dynamics (CFD) codes
thereby significantly improving their performance on emerging Intel multi-/many-core
platforms such as the Intel R© Xeon R©1 processors and Intel R© Xeon PhiTM1 coprocessors.
We focus on unstructured-mesh finite-volume codes and restrict the discussion to fine-scale
optimizations with the objective to improve the strong-scaling behavior of these classes of
algorithms. We present the key architectural features of the Intel Xeon Phi coprocessor
and describe strategies to exploit them for improving performance of three widely used
CFD codes. Our benchmarking results show substantial performance advantages to speed
up time-to-solution.

1 INTRODUCTION

Unstructured mesh CFD codes pose inherent challenges for shared-memory multipro-
cessors, due to their large irregular working sets, unstructured memory accesses and vari-
able but limited amount of parallelism. Effectively utilizing compute and memory capa-
bilities on such systems requires careful performance tuning and optimization of the most
critical kernels. The main computational kernels in most finite-volume unstructured mesh

1Intel Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
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CFD codes can be broadly classified as follows (1) Edge-based stencil loops such as flux
and gradient computations; (2) Sparse, narrow-band recurrences including factorization
and matrix solvers; (3) Global collective operations, from the inner products and norms;
and (4) Vertex-based loops, for the state updates. We characterize these common com-
pute patterns to identify primary bottlenecks and detail effective optimization strategies
on both Xeon processors and the Xeon Phi coprocessor. For this purpose, we use three
of the modern and widely used CFD codes: SU2, Petsc-FUN3D, and OpenFOAM.

2 Architectural Features of the Intel Xeon Phi Coprocessor

The Intel Xeon Phi coprocessor has several important features that are different from
typical Intel Xeon products. Learning these features and how to make best use of them
when programming and tuning HPC applications is critical to getting the best perfor-
mance from the coprocessor. We provide an overview of its system-level and chip-level
topology as well the core architecture. We also cover the Vector Processing Units (VPU)
including a general overview of the ISA features and provide tips on how software should
issue instructions for best performance. In addition, we cover programming models in-
cluding the different ways that this platform can be used by developers and practitioners
working on CFD codes.

3 CFD codes

In this section we describe the CFD codes on which we apply the various optimizations
to improve their performance on modern multi-/many-core architectures.

3.1 SU2

SU2 is an open source code for CFD analysis and design optimization [1]. It solves com-
plex, multi-physics analysis and optimization tasks using arbitrary unstructured meshes.
It is designed so that it is easily extensible for the solution of general Partial Differential
Equations (PDEs)-based problems. For the implicit solver in SU2, one may use a non-
linear multigrid iteration at the outer-level, and the inner linear system (linearized using
the Jacobian) may be solved using a preconditioned GMRES solver. In this paper, we
build up on our recent work [2] on optimizing SU2 for many-core platforms and present
techniques to expose more thread-level parallelism, optimize memory/cache re-use, and
modify data layouts to gain speedups from vectorization of key flux residual kernels.

3.2 PETSc-FUN3d

PETSc-FUN3d is a popular CFD benchmark. W.K. Andersonet al. [3] won the Gordon-
Bell award for this code in 1999 by demonstrating state-of-art performance. We re-
examine this unstructured-grid implicit flow solver in light of modern highly parallel ar-
chitectures and build up on our recent work [4]. PETSc-FUN3D uses an implicit Newton-
Krylov-Schwarz (NKS) solver with pseudo-timestepping. The Newton iteration is used as
the outer non-linear solver, with an additive Schwarz based ILU preconditioned GMRES
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as the inner linear solver.

3.3 OpenFOAM

OpenFOAM [5] is a well-known software package for solving different kinds of partial
differential equations and is popular for CFD especially in the automotive segment. The
Intel Xeon Phi coprocessor provides an architecture that supports native C/C++ and
MPI communication without the need to rewrite OpenFOAM solvers. We will show the
optimizations we have applied to the OpenFOAM core parts of the Geometric Algebraic
Multigrid solver. Tuning techniques applied include improvements to vectorize the solver
code and software prefetching to reduce memory latency. A key contribution is a novel
hierarchical decomposition method that takes the heterogeneous hardware layout into
account and that strives to reduce communication between the different cluster nodes
and their respective coprocessor cards. Our work demonstrates that OpenFOAM can run
on heterogeneous clusters with good scalability across 16 nodes each of which contains
two Intel Xeon processors and two Intel Xeon Phi coprocessors. The benchmarks show
up to a 1.4× better performance of the heterogeneous cluster over the Xeon-only cluster.

4 Conclusions

In summary, we extract a key theme of underlying optimizations for three widely
used CFD codes which involves exposing more fine-scale concurrency, vectorization, and
efficient use of memory. These three tuning stunts are equally critical to obtain good
performance out of modern heterogeneous computing platforms.
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